diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h @@ -110,6 +110,13 @@ /// Returns null-attribute for any type without an encoding. SparseTensorEncodingAttr getSparseTensorEncoding(Type type); +/// Convenience method to query the whether a given DLT needs both position and +/// coordinates array or only coordinates array. +inline bool isDLTWithPosAndCrd(DimLevelType dlt) { + return isCompressedWithHiDLT(dlt) || isCompressedDLT(dlt); +} +inline bool isDLTWithOnlyCrd(DimLevelType dlt) { return isSingletonDLT(dlt); } + /// Returns true iff the given sparse tensor encoding attribute has a trailing /// COO region starting at the given level. bool isCOOType(SparseTensorEncodingAttr enc, Level startLvl, bool isUnique); diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td @@ -55,34 +55,32 @@ def SparseTensor_PackOp : SparseTensor_Op<"pack", [Pure]>, Arguments<(ins TensorOf<[AnyType]>:$values, - TensorOf<[AnySignlessIntegerOrIndex]>:$coordinates, - OptionalAttr:$batched_lvls)>, + Variadic>:$levels)>, Results<(outs AnySparseTensor: $result)> { - let summary = "Returns a sparse tensor from the given (values, coordinates) pair"; + let summary = "Returns a sparse tensor from the given values, levels"; let description = [{ - Packs the values/coordinates into a COO sparse tensor. The length - of `values` must match the outer-length of `coordinates`, since these - two tensors are "zipped" together. The `coordinates` argument provides - level-coords for each value, therefore, the inner-length of `coordinates` - must match the level-rank of the returned tensor, and each level-coords - must be valid for the level-sizes of the returned tensor. Note that - the returned tensor must be statically shaped because it is impossible - to infer the dimension-shape from level-coordinates alone. + Packs the values/levels into a sparse tensor. The order and types of provided + levels must be consistent with the actual storage layout of the returned sparse + tensor described below. + + - `values : tensor` + supplies the value for each stored element in the sparse tensor. + - `levels: [tensor, ...]` + each supplies the sparse tensor coordinates scheme in the sparse tensor for + the corresponding level as specifed by `sparse_tensor::StorageLayout`. + + This operation can be used to materialize a sparse tensor from external + sources; e.g., when passing two numpy arrays from Python. + + Disclaimer: This is users' responsibility to provide input that can be + correctly interpreted by the sparse compiler, which does not perform + any sanity test during runtime to verify data integrity. TODO: The returned tensor is allowed (in principle) to have non-identity dimOrdering/higherOrdering mappings. However, the current implementation does not yet support them. - - `coordinates : tensor` - supplies the level-coords for each element in `values`. - - `values : tensor` - supplies the corresponding values for each entry in `coordinates`. - - `batched_lvls : optional` - supplies the number of leading levels that are batched. - - This operation can be used to materialize a sparse tensor from external - sources; e.g., when passing two numpy arrays from Python. Example: @@ -95,30 +93,12 @@ // of 3x4 matrix |0.0, 0.0, 2.2, 3.3| // |0.0, 0.0, 0.0, 0.0| ``` - - If `batched_lvls` is provided, the operation materializes a batched sparse tensor. - Example: - - ```mlir - %values = arith.constant dense<[[ 1.1, 2.2, 3.3 ], - [ 1.2, 2.3, 0.0 ]]> : tensor<2x3xf64> - %coordinates = arith.constant dense<[[ [0], [1], [2] ], - [ [1], [2], [3] ]> : tensor<2x3x1xindex> - %st = sparse_tensor.pack %values, %coordinates batched_lvls=1 - : tensor<2x3xf64>, tensor<2x3x1xindex> to tensor<2x4xf64, #BCOO> - // yields BCOO format |1.1, 2.2, 3.3, 0.0| - // of 2x4 matrix |0.0, 1.2, 2.3, 0.0| ``` }]; - let extraClassDeclaration = [{ - /// Returns the number of leading levels that are batched. - unsigned getNumBatchedLvls(); - }]; - let assemblyFormat = - "$values `,` $coordinates (`batched_lvls` `=` $batched_lvls^)? attr-dict" - "`:` type($values) `,` type($coordinates) `to` type($result)"; + "$values `,` $levels attr-dict" + "`:` type($values) `,` type($levels) `to` type($result)"; let hasVerifier = 1; } diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp --- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp +++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp @@ -66,10 +66,10 @@ // Per-level storage. for (Level l = 0; l < end; l++) { const auto dlt = lvlTypes[l]; - if (isCompressedDLT(dlt) || isCompressedWithHiDLT(dlt)) { + if (isDLTWithPosAndCrd(dlt)) { RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::PosMemRef, l, dlt); RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, dlt); - } else if (isSingletonDLT(dlt)) { + } else if (isDLTWithOnlyCrd(dlt)) { RETURN_ON_FALSE(fieldIdx++, SparseTensorFieldKind::CrdMemRef, l, dlt); } else { assert(isDenseDLT(dlt)); // no fields @@ -775,6 +775,8 @@ return success(); } +// DEPRECATED: This function is deprecated! Remove it after unpack supports +// arbitrary sparse encoding. static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape, SparseTensorType tensorTp, RankedTensorType valuesTp, @@ -832,16 +834,83 @@ return success(); } +static Type getFieldElemType(SparseTensorType stt, SparseTensorFieldKind kind) { + switch (kind) { + case SparseTensorFieldKind::CrdMemRef: + return stt.getCrdType(); + case SparseTensorFieldKind::PosMemRef: + return stt.getPosType(); + case SparseTensorFieldKind::ValMemRef: + return stt.getElementType(); + case SparseTensorFieldKind::StorageSpec: + return nullptr; + } + llvm_unreachable("Unrecognizable FieldKind"); +} + +static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape, + SparseTensorType stt, + RankedTensorType valTp, + TypeRange lvlTps) { + if (requiresStaticShape && !stt.hasStaticDimShape()) + return op->emitError("the sparse-tensor must have static shape"); + if (!stt.hasEncoding()) + return op->emitError("the sparse-tensor must have an encoding attribute"); + if (!stt.isIdentity()) + return op->emitError("the sparse-tensor must have the identity mapping"); + + // Verifies the trailing COO. + Level cooStartLvl = getCOOStart(stt.getEncoding()); + if (cooStartLvl < stt.getLvlRank()) { + // We only supports trailing COO for now, must be the last input. + auto cooTp = lvlTps.back().cast(); + // The coordinates should be in shape of + unsigned expCOORank = stt.getLvlRank() - cooStartLvl; + if (cooTp.getRank() != 2 || expCOORank != cooTp.getShape().back()) { + op->emitError("input/output trailing COO level-ranks don't match"); + } + } + + // Verifies that all types match. + StorageLayout layout(stt.getEncoding()); + if (layout.getNumDataFields() != lvlTps.size() + 1) // plus one value memref + return op->emitError("inconsistent number of fields between input/output"); + + unsigned idx = 0; + bool misMatch = false; + layout.foreachField([&idx, &misMatch, stt, valTp, + lvlTps](FieldIndex fid, SparseTensorFieldKind fKind, + Level lvl, DimLevelType dlt) -> bool { + if (fKind == SparseTensorFieldKind::StorageSpec) + return true; + + Type inputTp = nullptr; + if (fKind == SparseTensorFieldKind::ValMemRef) { + inputTp = valTp; + } else { + assert(fid == idx && stt.getLvlType(lvl) == dlt); + inputTp = lvlTps[idx++]; + } + // The input element type and expected element type should match. + Type inpElemTp = inputTp.cast().getElementType(); + Type expElemTp = getFieldElemType(stt, fKind); + if (inpElemTp != expElemTp) { + misMatch = true; + return false; // to terminate the iteration + } + return true; + }); + + if (misMatch) + return op->emitError("input/output element-types don't match"); + return success(); +} + LogicalResult PackOp::verify() { const auto valuesTp = getRankedTensorType(getValues()); - const auto coordinatesTp = getRankedTensorType(getCoordinates()); + const auto lvlsTp = this->getLevels().getTypes(); const auto resTp = getSparseTensorType(getResult()); - return verifyPackUnPack(*this, true, resTp, valuesTp, coordinatesTp, - getBatchedLvlsAttr()); -} - -unsigned PackOp::getNumBatchedLvls() { - return getBatchedLvls().has_value() ? getBatchedLvls()->getZExtValue() : 0; + return verifyPackUnPack(*this, true, resTp, valuesTp, lvlsTp); } LogicalResult UnpackOp::verify() { diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp @@ -1214,192 +1214,93 @@ matchAndRewrite(NumberOfEntriesOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { // Query memSizes for the actually stored values. + // FIXME: the nse value computed in this way might be wrong when there is + // any "compressed-hi" level. rewriter.replaceOp( op, genValMemSize(rewriter, op.getLoc(), adaptor.getTensor())); return success(); } }; -static void populateCompressedWithHiPosArray(OpBuilder &builder, Location loc, - ArrayRef batchDimSzs, - Value posMemRef, unsigned nse, - PackOp op) { - SmallVector lbs, ubs, steps; - Value c0 = constantIndex(builder, loc, 0); - Value c1 = constantIndex(builder, loc, 1); - Value c2 = constantIndex(builder, loc, 2); - for (unsigned dimSz : batchDimSzs) { - lbs.push_back(c0); - ubs.push_back(constantIndex(builder, loc, dimSz)); - steps.push_back(c1); - } - auto tensorType = op.getValues().getType(); - auto memrefType = - MemRefType::get(tensorType.getShape(), tensorType.getElementType()); - Value batV = builder.create(loc, memrefType, - op.getValues()); - scf::buildLoopNest( - builder, loc, lbs, ubs, steps, - [&ubs, c0, c1, c2, nse, batV, posMemRef](OpBuilder &builder, Location loc, - ValueRange ivs) { - // Linearize index variables - Value crd = linearize(builder, loc, ivs, ubs); - Value len = constantIndex(builder, loc, nse); - Value pLo = builder.create(loc, crd, len); - SmallVector indices(ivs.begin(), ivs.end()); - auto whileOp = builder.create( - loc, TypeRange{builder.getIndexType()}, ValueRange{len}, - [&indices, c0, c1, batV](OpBuilder &builder, Location loc, - ValueRange vs) { - Value curLen = vs.front(); - Value pred = builder.create( - loc, arith::CmpIPredicate::eq, curLen, c0); - auto ifOp = builder.create( - loc, TypeRange{builder.getI1Type()}, pred, true); - { - OpBuilder::InsertionGuard guard(builder); - // if len == 0. - builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); - builder.create(loc, - constantI1(builder, loc, false)); - // Else branch. - builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); - indices.push_back( - builder.create(loc, curLen, c1)); - Value val = builder.create(loc, batV, indices); - indices.pop_back(); - Value cont = builder.create( - loc, arith::CmpFPredicate::OEQ, val, - constantZero(builder, loc, val.getType())); - builder.create(loc, cont); - } - builder.create(loc, ifOp.getResults()[0], vs); - }, - [c1](OpBuilder &builder, Location loc, ValueRange vs) { - // len --; - Value nxLen = builder.create(loc, vs.front(), c1); - builder.create(loc, nxLen); - }); - len = whileOp.getResults()[0]; - Value pHi = builder.create(loc, pLo, len); - // Stores position lower bound. - Value idx = builder.create(loc, crd, c2); - genStore(builder, loc, pLo, posMemRef, idx); - // Stores position upper bound. - idx = builder.create(loc, idx, c1); - genStore(builder, loc, pHi, posMemRef, idx); - }); -} - struct SparsePackOpConverter : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; LogicalResult matchAndRewrite(PackOp op, OpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { - const unsigned batchedLvls = op.getNumBatchedLvls(); - unsigned nse = op.getValues().getType().getDimSize(batchedLvls); + Location loc = op.getLoc(); const auto stt = getSparseTensorType(op.getResult()); - assert(isCOOType(stt.getEncoding(), batchedLvls, true)); - - unsigned batchedCount = 1; - SmallVector batchDimSzs; - batchDimSzs.reserve(batchedLvls); - for (unsigned i = 0; i < batchedLvls; i++) { - // Should already be guaranteed by verifier. - assert(!ShapedType::isDynamic(stt.getDimShape()[i])); - batchedCount *= stt.getDimShape()[i]; - batchDimSzs.push_back(stt.getDimShape()[i]); - } SmallVector fields; - Location loc = op.getLoc(); foreachFieldAndTypeInSparseTensor( stt, - [&rewriter, &fields, &op, &batchDimSzs, nse, batchedCount, stt, + [&rewriter, &fields, &op, &stt, loc](Type fType, FieldIndex fIdx, SparseTensorFieldKind fKind, Level /*lvl*/, DimLevelType dlt) -> bool { assert(fields.size() == fIdx); - Value field; - switch (fKind) { - case SparseTensorFieldKind::StorageSpec: - field = SparseTensorSpecifier::getInitValue(rewriter, loc, stt); - break; - case SparseTensorFieldKind::PosMemRef: { - // TACO-style COO starts with a PosBuffer - const auto posTp = stt.getPosType(); - if (isCompressedDLT(dlt)) { - auto memrefType = MemRefType::get({batchedCount + 1}, posTp); - field = rewriter.create(loc, memrefType); - Value c0 = constantIndex(rewriter, loc, 0); - genStore(rewriter, loc, c0, field, c0); - for (unsigned i = 1; i <= batchedCount; i++) { - // The postion memref will have values as - // [0, nse, 2 * nse, ..., batchedCount * nse] - Value idx = constantIndex(rewriter, loc, i); - Value val = constantIndex(rewriter, loc, nse * i); - genStore(rewriter, loc, val, field, idx); - } - } else { - assert(isCompressedWithHiDLT(dlt) && !batchDimSzs.empty()); - MemRefType posMemTp = MemRefType::get({batchedCount * 2}, posTp); - field = rewriter.create(loc, posMemTp); - populateCompressedWithHiPosArray(rewriter, loc, batchDimSzs, - field, nse, op); - } - break; - } - case SparseTensorFieldKind::CrdMemRef: { - auto tensorType = op.getCoordinates().getType(); - auto memrefType = MemRefType::get(tensorType.getShape(), - tensorType.getElementType()); - field = rewriter.create( - op->getLoc(), memrefType, op.getCoordinates()); + if (fKind == SparseTensorFieldKind::StorageSpec) { + fields.push_back( + SparseTensorSpecifier::getInitValue(rewriter, loc, stt)); + } else { + // Else simply takes the inputs. + Value field = fKind == SparseTensorFieldKind::ValMemRef + ? op.getValues() + : op.getLevels()[fIdx]; - break; - } - case SparseTensorFieldKind::ValMemRef: { - auto tensorType = op.getValues().getType(); + auto tensorType = field.getType().cast(); auto memrefType = MemRefType::get(tensorType.getShape(), tensorType.getElementType()); field = rewriter.create( - op->getLoc(), memrefType, op.getValues()); - break; - } - } - - assert(field); - if (auto memrefTp = dyn_cast(field.getType()); - memrefTp && memrefTp.getRank() > 1) { - ReassociationIndices reassociation; - for (int i = 0, e = memrefTp.getRank(); i < e; i++) - reassociation.push_back(i); - // Flattens the buffer to rank 1. The value buffer might need be - // collapsed as well due to batching. - field = rewriter.create( - loc, field, ArrayRef(reassociation)); - } - - if (fType != field.getType()) + op->getLoc(), memrefType, field); + if (memrefType.getRank() > 1) { + // Flattens the buffer to rank 1. + auto reassoc = getReassociationForFlattening(memrefType); + field = + rewriter.create(loc, field, reassoc); + } field = rewriter.create(loc, fType, field); - fields.push_back(field); - // Returns true to continue the iteration. + fields.push_back(field); + } return true; }); MutSparseTensorDescriptor desc(stt, fields); - auto noe = linalg::createOrFoldDimOp(rewriter, loc, op.getValues(), 0); + Value c1 = constantIndex(rewriter, loc, 1); + Value c2 = constantIndex(rewriter, loc, 2); + Value posBack = c1; // index to the last value in the postion array + Value memSize = c2; // memory size for current array + // Sets up SparseTensorSpecifier. for (Level lvl = 0, lvlRank = stt.getLvlRank(); lvl < lvlRank; lvl++) { + assert(!ShapedType::isDynamic(stt.getDimShape()[lvl])); + // FIXME: dim/lvl confusion! - const auto sh = stt.getDimShape()[lvl]; - assert(!ShapedType::isDynamic(sh)); - desc.setLvlSize(rewriter, loc, lvl, constantIndex(rewriter, loc, sh)); - if (lvl == 0) - desc.setPosMemSize(rewriter, loc, lvl, constantIndex(rewriter, loc, 2)); + // Sets up the level size. + auto lvlSize = constantIndex(rewriter, loc, stt.getDimShape()[lvl]); + desc.setLvlSize(rewriter, loc, lvl, lvlSize); + + // Sets up the memory size by reading the last value in position array. + DimLevelType dlt = stt.getLvlType(lvl); + // Simply forwards the position index when this is a dense level. + if (isDenseDLT(dlt)) { + memSize = rewriter.create(loc, lvlSize, posBack); + posBack = rewriter.create(loc, memSize, c1); + continue; + } - desc.setCrdMemSize(rewriter, loc, lvl, noe); + if (isDLTWithPosAndCrd(dlt)) { + assert(isCompressedDLT(dlt) || isCompressedWithHiDLT(dlt)); + if (isCompressedWithHiDLT(dlt)) { + memSize = rewriter.create(loc, memSize, c2); + posBack = rewriter.create(loc, memSize, c1); + } + desc.setPosMemSize(rewriter, loc, lvl, memSize); + // The last value in position array is the memory size for next level. + memSize = genIndexLoad(rewriter, loc, desc.getPosMemRef(lvl), posBack); + posBack = rewriter.create(loc, posBack, c1); + } + desc.setCrdMemSize(rewriter, loc, lvl, memSize); } - desc.setValMemSize(rewriter, loc, noe); + desc.setValMemSize(rewriter, loc, memSize); rewriter.replaceOp(op, genTuple(rewriter, loc, desc)); return success(); @@ -1568,10 +1469,8 @@ struct SparseUnpackOpConverter : public OpConversionPattern { using OpConversionPattern::OpConversionPattern; - SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context, - bool createDeallocs) - : OpConversionPattern(typeConverter, context), - createDeallocs(createDeallocs) {} + SparseUnpackOpConverter(TypeConverter &typeConverter, MLIRContext *context) + : OpConversionPattern(typeConverter, context) {} LogicalResult matchAndRewrite(UnpackOp op, OpAdaptor adaptor, @@ -1582,26 +1481,9 @@ assert(isCOOType(srcTp.getEncoding(), nBatched, true) && desc.getFields().size() == 4); // specifier + pos + crds + values (void)srcTp; - auto logicRes = nBatched == 0 - ? genUnBatchedUnpackOp(op, desc, rewriter) - : genBatchedUnpackOp(op, nBatched, desc, rewriter); - Value posBuf = desc.getPosMemRef(nBatched); - - if (createDeallocs) { - // Unpack ends the lifetime of the sparse tensor. While the value array - // and coordinate array are unpacked and returned, the position array - // becomes useless and need to be freed (if user requests). - // FIXME: Depending on whether the tensor being unpacked is created by - // PackOp or not, we may or may not need to free other memref fields of - // the sparse tensor too (PackOp borrows value/coordinate buffer). - rewriter.create(op.getLoc(), posBuf); - } - - return logicRes; + return nBatched == 0 ? genUnBatchedUnpackOp(op, desc, rewriter) + : genBatchedUnpackOp(op, nBatched, desc, rewriter); } - -private: - const bool createDeallocs; }; struct SparseNewOpConverter : public OpConversionPattern { @@ -1755,11 +1637,11 @@ void mlir::populateSparseTensorCodegenPatterns( TypeConverter &typeConverter, RewritePatternSet &patterns, bool createSparseDeallocs, bool enableBufferInitialization) { - patterns.add, SparseSliceGetterOpConverter(typeConverter, patterns.getContext()); - patterns.add( + patterns.add( typeConverter, patterns.getContext(), createSparseDeallocs); patterns.add(typeConverter, patterns.getContext(), enableBufferInitialization); diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorDescriptor.h b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorDescriptor.h --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorDescriptor.h +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorDescriptor.h @@ -17,7 +17,6 @@ #include "mlir/Dialect/SparseTensor/IR/SparseTensorStorageLayout.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" -#include "mlir/Transforms/DialectConversion.h" namespace mlir { namespace sparse_tensor { diff --git a/mlir/test/Dialect/SparseTensor/invalid.mlir b/mlir/test/Dialect/SparseTensor/invalid.mlir --- a/mlir/test/Dialect/SparseTensor/invalid.mlir +++ b/mlir/test/Dialect/SparseTensor/invalid.mlir @@ -8,86 +8,50 @@ // ----- -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> +#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], posWidth=32, crdWidth=32}> -func.func @non_static_pack_ret(%values: tensor<6xf64>, %coordinates: tensor<6x1xi32>) +func.func @non_static_pack_ret(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>) -> tensor { // expected-error@+1 {{the sparse-tensor must have static shape}} - %0 = sparse_tensor.pack %values, %coordinates - : tensor<6xf64>, tensor<6x1xi32> to tensor + %0 = sparse_tensor.pack %values, %pos, %coordinates + : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32> to tensor return %0 : tensor } // ----- -#DenseVector = #sparse_tensor.encoding<{lvlTypes = ["dense"], crdWidth=32}> - -func.func @invalid_pack_dense(%values: tensor<6xf64>, %coordinates: tensor<6x1xi32>) - -> tensor<100xf64, #DenseVector> { - // expected-error@+1 {{the sparse-tensor must have a COO type}} - %0 = sparse_tensor.pack %values, %coordinates - : tensor<6xf64>, tensor<6x1xi32> to tensor<100xf64, #DenseVector> - return %0 : tensor<100xf64, #DenseVector> -} - -// ----- +#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], posWidth=32, crdWidth=32}> -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> - -func.func @invalid_pack_data(%values: tensor<6x1xf64>, %coordinates: tensor<6x1xi32>) - -> tensor<100xf64, #SparseVector> { - // expected-error@+1 {{values must have rank 1 + batched_lvls}} - %0 = sparse_tensor.pack %values, %coordinates - : tensor<6x1xf64>, tensor<6x1xi32> to tensor<100xf64, #SparseVector> - return %0 : tensor<100xf64, #SparseVector> -} - -// ----- - -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> - -func.func @invalid_pack_type(%values: tensor<6xf64>, %coordinates: tensor<6x1xi32>) +func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x1xi32>) -> tensor<100xf32, #SparseVector> { // expected-error@+1 {{input/output element-types don't match}} - %0 = sparse_tensor.pack %values, %coordinates - : tensor<6xf64>, tensor<6x1xi32> to tensor<100xf32, #SparseVector> + %0 = sparse_tensor.pack %values, %pos, %coordinates + : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32> to tensor<100xf32, #SparseVector> return %0 : tensor<100xf32, #SparseVector> } // ----- -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> +#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed-nu", "singleton"], posWidth=32, crdWidth=32}> -func.func @invalid_pack_type(%values: tensor<5xf64>, %coordinates: tensor<6x1xi32>) - -> tensor<100xf64, #SparseVector> { - // expected-error@+1 {{values/coordinates number-of-elements don't match}} - %0 = sparse_tensor.pack %values, %coordinates - : tensor<5xf64>, tensor<6x1xi32> to tensor<100xf64, #SparseVector> - return %0 : tensor<100xf64, #SparseVector> +func.func @invalid_pack_type(%values: tensor<6xf64>, %pos: tensor<2xi32>, %coordinates: tensor<6x3xi32>) + -> tensor<100x2xf64, #SparseVector> { + // expected-error@+1 {{input/output trailing COO level-ranks don't match}} + %0 = sparse_tensor.pack %values, %pos, %coordinates + : tensor<6xf64>, tensor<2xi32>, tensor<6x3xi32> to tensor<100x2xf64, #SparseVector> + return %0 : tensor<100x2xf64, #SparseVector> } // ----- -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> +#CSR = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed"], posWidth=32, crdWidth=32}> -func.func @invalid_pack_type(%values: tensor<6xf64>, %coordinates: tensor<6x2xi32>) - -> tensor<100xf64, #SparseVector> { - // expected-error@+1 {{input/output level-ranks don't match}} +func.func @invalid_pack_mis_position(%values: tensor<6xf64>, %coordinates: tensor<6xi32>) + -> tensor<2x100xf64, #CSR> { + // expected-error@+1 {{inconsistent number of fields between input/output}} %0 = sparse_tensor.pack %values, %coordinates - : tensor<6xf64>, tensor<6x2xi32> to tensor<100xf64, #SparseVector> - return %0 : tensor<100xf64, #SparseVector> -} - -// ----- - -#BCOO = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed-hi"], crdWidth=32}> - -func.func @invalid_pack_batched(%values: tensor<2x6xf64>, %coordinates: tensor<3x6x1xi32>) - -> tensor<2x100xf64, #BCOO> { - // expected-error@+1 {{values/coordinates batched level sizes don't match statically}} - %0 = sparse_tensor.pack %values, %coordinates batched_lvls=1 - : tensor<2x6xf64>, tensor<3x6x1xi32> to tensor<2x100xf64, #BCOO> - return %0 : tensor<2x100xf64, #BCOO> + : tensor<6xf64>, tensor<6xi32> to tensor<2x100xf64, #CSR> + return %0 : tensor<2x100xf64, #CSR> } // ----- diff --git a/mlir/test/Dialect/SparseTensor/roundtrip.mlir b/mlir/test/Dialect/SparseTensor/roundtrip.mlir --- a/mlir/test/Dialect/SparseTensor/roundtrip.mlir +++ b/mlir/test/Dialect/SparseTensor/roundtrip.mlir @@ -13,39 +13,24 @@ // ----- -#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> +#SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], posWidth=32, crdWidth=32}> // CHECK-LABEL: func @sparse_pack( // CHECK-SAME: %[[D:.*]]: tensor<6xf64>, +// CHECK-SAME: %[[P:.*]]: tensor<2xi32>, // CHECK-SAME: %[[I:.*]]: tensor<6x1xi32>) -// CHECK: %[[R:.*]] = sparse_tensor.pack %[[D]], %[[I]] +// CHECK: %[[R:.*]] = sparse_tensor.pack %[[D]], %[[P]], %[[I]] // CHECK: return %[[R]] : tensor<100xf64, #{{.*}}> -func.func @sparse_pack(%data: tensor<6xf64>, %index: tensor<6x1xi32>) +func.func @sparse_pack(%data: tensor<6xf64>, %pos: tensor<2xi32>, %index: tensor<6x1xi32>) -> tensor<100xf64, #SparseVector> { - %0 = sparse_tensor.pack %data, %index : tensor<6xf64>, tensor<6x1xi32> - to tensor<100xf64, #SparseVector> + %0 = sparse_tensor.pack %data, %pos, %index : tensor<6xf64>, tensor<2xi32>, tensor<6x1xi32> + to tensor<100xf64, #SparseVector> return %0 : tensor<100xf64, #SparseVector> } // ----- -#BCOO = #sparse_tensor.encoding<{lvlTypes = ["dense", "compressed-hi"], crdWidth=32}> -// CHECK-LABEL: func @sparse_pack_batched( -// CHECK-SAME: %[[D:.*]]: tensor<2x6xf64>, -// CHECK-SAME: %[[I:.*]]: tensor<2x6x1xi32>) -// CHECK: %[[R:.*]] = sparse_tensor.pack %[[D]], %[[I]] batched_lvls = 1 -// CHECK: return %[[R]] : tensor<2x100xf64, #{{.*}}> -func.func @sparse_pack_batched(%values: tensor<2x6xf64>, %coordinates: tensor<2x6x1xi32>) - -> tensor<2x100xf64, #BCOO> { - %0 = sparse_tensor.pack %values, %coordinates batched_lvls=1 - : tensor<2x6xf64>, tensor<2x6x1xi32> to tensor<2x100xf64, #BCOO> - return %0 : tensor<2x100xf64, #BCOO> -} - -// ----- - #SparseVector = #sparse_tensor.encoding<{lvlTypes = ["compressed"], crdWidth=32}> - // CHECK-LABEL: func @sparse_unpack( // CHECK-SAME: %[[T:.*]]: tensor<100xf64, # // CHECK: %[[D:.*]], %[[I:.*]], %[[N:.*]] = sparse_tensor.unpack %[[T]] diff --git a/mlir/test/Dialect/SparseTensor/sparse_pack.mlir b/mlir/test/Dialect/SparseTensor/sparse_pack.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_pack.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_pack.mlir @@ -7,34 +7,32 @@ // CHECK-LABEL: func.func @sparse_pack( // CHECK-SAME: %[[VAL_0:.*]]: tensor<6xf64>, -// CHECK-SAME: %[[VAL_1:.*]]: tensor<6x2xi32>) -// CHECK-DAG: %[[VAL_2:.*]] = memref.alloc() : memref<2xindex> -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index -// CHECK-DAG: memref.store %[[VAL_3]], %[[VAL_2]]{{\[}}%[[VAL_3]]] : memref<2xindex> -// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = arith.constant 6 : index -// CHECK-DAG: memref.store %[[VAL_5]], %[[VAL_2]]{{\[}}%[[VAL_4]]] : memref<2xindex> -// CHECK: %[[VAL_6:.*]] = memref.cast %[[VAL_2]] : memref<2xindex> to memref -// CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<6x2xi32> -// CHECK: %[[VAL_8:.*]] = memref.collapse_shape %[[VAL_7]] {{\[\[}}0, 1]] : memref<6x2xi32> into memref<12xi32> -// CHECK: %[[VAL_9:.*]] = memref.cast %[[VAL_8]] : memref<12xi32> to memref -// CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_0]] : memref<6xf64> -// CHECK: %[[VAL_11:.*]] = memref.cast %[[VAL_10]] : memref<6xf64> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.storage_specifier.init -// CHECK: %[[VAL_13:.*]] = arith.constant 100 : index -// CHECK: %[[VAL_14:.*]] = sparse_tensor.storage_specifier.set %[[VAL_12]] lvl_sz at 0 with %[[VAL_13]] -// CHECK: %[[VAL_15:.*]] = arith.constant 2 : index -// CHECK: %[[VAL_16:.*]] = sparse_tensor.storage_specifier.set %[[VAL_14]] pos_mem_sz at 0 with %[[VAL_15]] -// CHECK: %[[VAL_17:.*]] = sparse_tensor.storage_specifier.set %[[VAL_16]] crd_mem_sz at 0 with %[[VAL_5]] +// CHECK-SAME: %[[VAL_1:.*]]: tensor<2xindex>, +// CHECK-SAME: %[[VAL_2:.*]]: tensor<6x2xi32>) +// CHECK-DAG: %[[VAL_3:.*]] = bufferization.to_memref %[[VAL_1]] : memref<2xindex> +// CHECK-DAG: %[[VAL_4:.*]] = memref.cast %[[VAL_3]] : memref<2xindex> to memref +// CHECK-DAG: %[[VAL_5:.*]] = bufferization.to_memref %[[VAL_2]] : memref<6x2xi32> +// CHECK-DAG: %[[VAL_6:.*]] = memref.collapse_shape %[[VAL_5]] {{\[\[}}0, 1]] : memref<6x2xi32> into memref<12xi32> +// CHECK-DAG: %[[VAL_7:.*]] = memref.cast %[[VAL_6]] : memref<12xi32> to memref +// CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref<6xf64> +// CHECK-DAG: %[[VAL_9:.*]] = memref.cast %[[VAL_8]] : memref<6xf64> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.storage_specifier.init +// CHECK-DAG: %[[VAL_11:.*]] = arith.constant 1 : index +// CHECK-DAG: %[[VAL_12:.*]] = arith.constant 2 : index +// CHECK-DAG: %[[VAL_13:.*]] = arith.constant 100 : index +// CHECK: %[[VAL_14:.*]] = sparse_tensor.storage_specifier.set %[[VAL_10]] lvl_sz at 0 with %[[VAL_13]] +// CHECK: %[[VAL_15:.*]] = sparse_tensor.storage_specifier.set %[[VAL_14]] pos_mem_sz at 0 with %[[VAL_12]] +// CHECK: %[[VAL_16:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_11]]] : memref +// CHECK: %[[VAL_17:.*]] = sparse_tensor.storage_specifier.set %[[VAL_15]] crd_mem_sz at 0 with %[[VAL_16]] // CHECK: %[[VAL_18:.*]] = sparse_tensor.storage_specifier.set %[[VAL_17]] lvl_sz at 1 with %[[VAL_13]] -// CHECK: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] crd_mem_sz at 1 with %[[VAL_5]] -// CHECK: %[[VAL_20:.*]] = sparse_tensor.storage_specifier.set %[[VAL_19]] val_mem_sz with %[[VAL_5]] -// CHECK: return %[[VAL_6]], %[[VAL_9]], %[[VAL_11]], %[[VAL_20]] +// CHECK: %[[VAL_19:.*]] = sparse_tensor.storage_specifier.set %[[VAL_18]] crd_mem_sz at 1 with %[[VAL_16]] +// CHECK: %[[VAL_20:.*]] = sparse_tensor.storage_specifier.set %[[VAL_19]] val_mem_sz with %[[VAL_16]] +// CHECK: return %[[VAL_4]], %[[VAL_7]], %[[VAL_9]], %[[VAL_20]] // CHECK: } -func.func @sparse_pack(%values: tensor<6xf64>, %coordinates: tensor<6x2xi32>) +func.func @sparse_pack(%values: tensor<6xf64>, %pos:tensor<2xindex>, %coordinates: tensor<6x2xi32>) -> tensor<100x100xf64, #COO> { - %0 = sparse_tensor.pack %values, %coordinates - : tensor<6xf64>, tensor<6x2xi32> to tensor<100x100xf64, #COO> + %0 = sparse_tensor.pack %values, %pos, %coordinates + : tensor<6xf64>, tensor<2xindex>, tensor<6x2xi32> to tensor<100x100xf64, #COO> return %0 : tensor<100x100xf64, #COO> } @@ -68,7 +66,6 @@ // CHECK: %[[VAL_19:.*]] = bufferization.to_tensor %[[VAL_20:.*]] : memref<6xf64> // CHECK: %[[VAL_21:.*]] = bufferization.to_tensor %[[VAL_17]] : memref<6x2xi32> // CHECK: %[[VAL_22:.*]] = sparse_tensor.storage_specifier -// CHECK: memref.dealloc %[[VAL_0]] : memref // CHECK: return %[[VAL_19]], %[[VAL_21]], %[[VAL_22]] : tensor<6xf64>, tensor<6x2xi32>, index // CHECK: } func.func @sparse_unpack(%sp: tensor<100x100xf64, #COO>) -> (tensor<6xf64>, tensor<6x2xi32>, index) { diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_pack.mlir @@ -31,6 +31,12 @@ crdWidth = 32 }> +#CSR = #sparse_tensor.encoding<{ + lvlTypes = [ "dense", "compressed" ], + posWidth = 32, + crdWidth = 32 +}> + #BCOO = #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed-hi-nu", "singleton" ] }> @@ -50,38 +56,59 @@ [ 1.0, 2.0, 3.0] > : tensor<3xf64> + %pos = arith.constant dense< + [0, 3] + > : tensor<2xindex> + %index = arith.constant dense< [[ 1, 2], [ 5, 6], [ 7, 8]] > : tensor<3x2xindex> + %pos32 = arith.constant dense< + [0, 3] + > : tensor<2xi32> + %index32 = arith.constant dense< [[ 1, 2], [ 5, 6], [ 7, 8]] > : tensor<3x2xi32> - %s4 = sparse_tensor.pack %data, %index : tensor<3xf64>, tensor<3x2xindex> + %s4 = sparse_tensor.pack %data, %pos, %index : tensor<3xf64>, tensor<2xindex>, tensor<3x2xindex> to tensor<10x10xf64, #SortedCOO> - %s5= sparse_tensor.pack %data, %index32 : tensor<3xf64>, tensor<3x2xi32> + %s5= sparse_tensor.pack %data, %pos32, %index32 : tensor<3xf64>, tensor<2xi32>, tensor<3x2xi32> to tensor<10x10xf64, #SortedCOOI32> + %csr_pos32 = arith.constant dense< + [0, 1, 3] + > : tensor<3xi32> + + %csr_index32 = arith.constant dense< + [1, 0, 1] + > : tensor<3xi32> + %csr= sparse_tensor.pack %data, %csr_pos32, %csr_index32 : tensor<3xf64>, tensor<3xi32>, tensor<3xi32> + to tensor<2x2xf64, #CSR> + %bdata = arith.constant dense< - [[ 1.0, 2.0, 3.0], - [ 4.0, 5.0, 0.0]] - > : tensor<2x3xf64> + [ 1.0, 2.0, 3.0, 4.0, 5.0, 0.0] + > : tensor<6xf64> + + %bpos = arith.constant dense< + [0, 3, 3, 5] + > : tensor<4xindex> %bindex = arith.constant dense< - [[[ 1, 2], - [ 5, 6], - [ 7, 8]], - [[ 2, 3], - [ 4, 2], - [ 10, 10]]] - > : tensor<2x3x2xindex> - %bs = sparse_tensor.pack %bdata, %bindex batched_lvls = 1 : - tensor<2x3xf64>, tensor<2x3x2xindex> to tensor<2x10x10xf64, #BCOO> + [[ 1, 2], + [ 5, 6], + [ 7, 8], + [ 2, 3], + [ 4, 2], + [ 10, 10]] + > : tensor<6x2xindex> + %bs = sparse_tensor.pack %bdata, %bpos, %bindex : + tensor<6xf64>, tensor<4xindex>, tensor<6x2xindex> to tensor<2x10x10xf64, #BCOO> // CHECK:1 // CHECK-NEXT:2 @@ -119,6 +146,25 @@ vector.print %v: f64 } + // CHECK-NEXT:0 + // CHECK-NEXT:1 + // CHECK-NEXT:1 + // + // CHECK-NEXT:1 + // CHECK-NEXT:0 + // CHECK-NEXT:2 + // + // CHECK-NEXT:1 + // CHECK-NEXT:1 + // CHECK-NEXT:3 + sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do { + ^bb0(%1: index, %2: index, %v: f64) : + vector.print %1: index + vector.print %2: index + vector.print %v: f64 + } + + // CHECK-NEXT:1 // CHECK-NEXT:2 // CHECK-NEXT:3 @@ -164,6 +210,7 @@ %d1, %i1, %n1 = sparse_tensor.unpack %s4 : tensor<10x10xf64, #SortedCOO> to tensor<3xf64>, tensor<3x2xindex>, index + // FIXME: This should be freed by one-shot-bufferization. bufferization.dealloc_tensor %bd : tensor<2x3xf64> bufferization.dealloc_tensor %bi : tensor<2x3x2xindex>