diff --git a/libc/src/string/CMakeLists.txt b/libc/src/string/CMakeLists.txt --- a/libc/src/string/CMakeLists.txt +++ b/libc/src/string/CMakeLists.txt @@ -450,6 +450,12 @@ endforeach() endif() + if("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU") + # Prevent warning when passing x86 SIMD types as template arguments. + # e.g. "warning: ignoring attributes on template argument ā€˜__m128iā€™ [-Wignored-attributes]" + list(APPEND ADD_IMPL_COMPILE_OPTIONS "-Wno-ignored-attributes") + endif() + add_entrypoint_object(${impl_name} NAME ${name} SRCS ${ADD_IMPL_SRCS} @@ -564,7 +570,7 @@ if(${LIBC_TARGET_ARCHITECTURE_IS_X86}) add_memcpy(memcpy_x86_64_opt_sse2 COMPILE_OPTIONS -march=k8 REQUIRE SSE2) add_memcpy(memcpy_x86_64_opt_sse4 COMPILE_OPTIONS -march=nehalem REQUIRE SSE4_2) - add_memcpy(memcpy_x86_64_opt_avx2 COMPILE_OPTIONS -march=haswell REQUIRE AVX2) + add_memcpy(memcpy_x86_64_opt_avx COMPILE_OPTIONS -march=haswell REQUIRE AVX) add_memcpy(memcpy_x86_64_opt_avx512 COMPILE_OPTIONS -march=skylake-avx512 REQUIRE AVX512F) add_memcpy(memcpy_opt_host COMPILE_OPTIONS ${LIBC_COMPILE_OPTIONS_NATIVE}) add_memcpy(memcpy) diff --git a/libc/src/string/memory_utils/CMakeLists.txt b/libc/src/string/memory_utils/CMakeLists.txt --- a/libc/src/string/memory_utils/CMakeLists.txt +++ b/libc/src/string/memory_utils/CMakeLists.txt @@ -23,6 +23,7 @@ libc.src.__support.CPP.type_traits libc.src.__support.macros.config libc.src.__support.macros.optimization + libc.src.__support.macros.properties.architectures ) add_header_library( diff --git a/libc/src/string/memory_utils/bcmp_implementations.h b/libc/src/string/memory_utils/bcmp_implementations.h --- a/libc/src/string/memory_utils/bcmp_implementations.h +++ b/libc/src/string/memory_utils/bcmp_implementations.h @@ -23,93 +23,82 @@ [[maybe_unused]] LIBC_INLINE BcmpReturnType inline_bcmp_embedded_tiny(CPtr p1, CPtr p2, size_t count) { - LIBC_LOOP_NOUNROLL - for (size_t offset = 0; offset < count; ++offset) - if (auto value = generic::Bcmp<1>::block(p1 + offset, p2 + offset)) - return value; - return BcmpReturnType::ZERO(); + return generic::Bcmp::loop_and_tail(p1, p2, count); } #if defined(LIBC_TARGET_ARCH_IS_X86) || defined(LIBC_TARGET_ARCH_IS_AARCH64) [[maybe_unused]] LIBC_INLINE BcmpReturnType inline_bcmp_generic_gt16(CPtr p1, CPtr p2, size_t count) { - if (count < 256) - return generic::Bcmp<16>::loop_and_tail(p1, p2, count); - if (auto value = generic::Bcmp<64>::block(p1, p2)) - return value; - align_to_next_boundary<64, Arg::P1>(p1, p2, count); - return generic::Bcmp<64>::loop_and_tail(p1, p2, count); + return generic::Bcmp::loop_and_tail_align_above(256, p1, p2, count); } #endif // defined(LIBC_TARGET_ARCH_IS_X86) || // defined(LIBC_TARGET_ARCH_IS_AARCH64) #if defined(LIBC_TARGET_ARCH_IS_X86) +#if defined(__SSE4_1__) [[maybe_unused]] LIBC_INLINE BcmpReturnType -inline_bcmp_x86_sse2_gt16(CPtr p1, CPtr p2, size_t count) { +inline_bcmp_x86_sse41_gt16(CPtr p1, CPtr p2, size_t count) { if (count <= 32) - return x86::sse2::Bcmp<16>::head_tail(p1, p2, count); - if (count < 256) - return x86::sse2::Bcmp<16>::loop_and_tail(p1, p2, count); - if (auto value = x86::sse2::Bcmp<16>::block(p1, p2)) - return value; - align_to_next_boundary<16, Arg::P1>(p1, p2, count); - return x86::sse2::Bcmp<64>::loop_and_tail(p1, p2, count); + return generic::Bcmp<__m128i>::head_tail(p1, p2, count); + return generic::Bcmp<__m128i>::loop_and_tail_align_above(256, p1, p2, count); } +#endif // __SSE4_1__ +#if defined(__AVX__) [[maybe_unused]] LIBC_INLINE BcmpReturnType -inline_bcmp_x86_avx2_gt16(CPtr p1, CPtr p2, size_t count) { +inline_bcmp_x86_avx_gt16(CPtr p1, CPtr p2, size_t count) { if (count <= 32) - return x86::sse2::Bcmp<16>::head_tail(p1, p2, count); + return generic::Bcmp<__m128i>::head_tail(p1, p2, count); if (count <= 64) - return x86::avx2::Bcmp<32>::head_tail(p1, p2, count); - if (count <= 128) - return x86::avx2::Bcmp<64>::head_tail(p1, p2, count); - if (LIBC_UNLIKELY(count >= 256)) { - if (auto value = x86::avx2::Bcmp<64>::block(p1, p2)) - return value; - align_to_next_boundary<64, Arg::P1>(p1, p2, count); - } - return x86::avx2::Bcmp<64>::loop_and_tail(p1, p2, count); + return generic::Bcmp<__m256i>::head_tail(p1, p2, count); + return generic::Bcmp<__m256i>::loop_and_tail_align_above(256, p1, p2, count); } +#endif // __AVX__ +#if defined(__AVX512BW__) [[maybe_unused]] LIBC_INLINE BcmpReturnType inline_bcmp_x86_avx512bw_gt16(CPtr p1, CPtr p2, size_t count) { if (count <= 32) - return x86::sse2::Bcmp<16>::head_tail(p1, p2, count); + return generic::Bcmp<__m128i>::head_tail(p1, p2, count); if (count <= 64) - return x86::avx2::Bcmp<32>::head_tail(p1, p2, count); + return generic::Bcmp<__m256i>::head_tail(p1, p2, count); if (count <= 128) - return x86::avx512bw::Bcmp<64>::head_tail(p1, p2, count); - if (LIBC_UNLIKELY(count >= 256)) { - if (auto value = x86::avx512bw::Bcmp<64>::block(p1, p2)) - return value; - align_to_next_boundary<64, Arg::P1>(p1, p2, count); - } - return x86::avx512bw::Bcmp<64>::loop_and_tail(p1, p2, count); + return generic::Bcmp<__m512i>::head_tail(p1, p2, count); + return generic::Bcmp<__m512i>::loop_and_tail_align_above(256, p1, p2, count); } +#endif // __AVX512BW__ [[maybe_unused]] LIBC_INLINE BcmpReturnType inline_bcmp_x86(CPtr p1, CPtr p2, size_t count) { if (count == 0) return BcmpReturnType::ZERO(); if (count == 1) - return generic::Bcmp<1>::block(p1, p2); + return generic::Bcmp::block(p1, p2); if (count == 2) - return generic::Bcmp<2>::block(p1, p2); - if (count <= 4) - return generic::Bcmp<2>::head_tail(p1, p2, count); - if (count <= 8) - return generic::Bcmp<4>::head_tail(p1, p2, count); + return generic::Bcmp::block(p1, p2); + if (count == 3) + return generic::BcmpSequence::block(p1, p2); + if (count == 4) + return generic::Bcmp::block(p1, p2); + if (count == 5) + return generic::BcmpSequence::block(p1, p2); + if (count == 6) + return generic::BcmpSequence::block(p1, p2); + if (count == 7) + return generic::BcmpSequence::block(p1, p2); + if (count == 8) + return generic::Bcmp::block(p1, p2); if (count <= 16) - return generic::Bcmp<8>::head_tail(p1, p2, count); - if constexpr (x86::kAvx512BW) - return inline_bcmp_x86_avx512bw_gt16(p1, p2, count); - else if constexpr (x86::kAvx2) - return inline_bcmp_x86_avx2_gt16(p1, p2, count); - else if constexpr (x86::kSse2) - return inline_bcmp_x86_sse2_gt16(p1, p2, count); - else - return inline_bcmp_generic_gt16(p1, p2, count); + return generic::Bcmp::head_tail(p1, p2, count); +#if defined(__AVX512BW__) + return inline_bcmp_x86_avx512bw_gt16(p1, p2, count); +#elif defined(__AVX__) + return inline_bcmp_x86_avx_gt16(p1, p2, count); +#elif defined(__SSE4_1__) + return inline_bcmp_x86_sse41_gt16(p1, p2, count); +#else + return inline_bcmp_generic_gt16(p1, p2, count); +#endif } #endif // defined(LIBC_TARGET_ARCH_IS_X86) diff --git a/libc/src/string/memory_utils/memcmp_implementations.h b/libc/src/string/memory_utils/memcmp_implementations.h --- a/libc/src/string/memory_utils/memcmp_implementations.h +++ b/libc/src/string/memory_utils/memcmp_implementations.h @@ -27,11 +27,7 @@ [[maybe_unused]] LIBC_INLINE MemcmpReturnType inline_memcmp_embedded_tiny(CPtr p1, CPtr p2, size_t count) { - LIBC_LOOP_NOUNROLL - for (size_t offset = 0; offset < count; ++offset) - if (auto value = generic::Memcmp<1>::block(p1 + offset, p2 + offset)) - return value; - return MemcmpReturnType::ZERO(); + return generic::Memcmp::loop_and_tail(p1, p2, count); } LIBC_INLINE MemcmpReturnType inline_memcmp(CPtr p1, CPtr p2, size_t count) { diff --git a/libc/src/string/memory_utils/op_generic.h b/libc/src/string/memory_utils/op_generic.h --- a/libc/src/string/memory_utils/op_generic.h +++ b/libc/src/string/memory_utils/op_generic.h @@ -33,6 +33,14 @@ #include +static_assert((UINTPTR_MAX == 4294967295U) || + (UINTPTR_MAX == 18446744073709551615UL), + "We currently only support 32- or 64-bit platforms"); + +#if defined(LIBC_TARGET_ARCH_IS_X86_64) || defined(LIBC_TARGET_ARCH_IS_AARCH64) +#define LLVM_LIBC_HAS_UINT64 +#endif + namespace __llvm_libc { // Compiler types using the vector attributes. using uint8x1_t = uint8_t __attribute__((__vector_size__(1))); @@ -45,19 +53,31 @@ } // namespace __llvm_libc namespace __llvm_libc::generic { + // We accept three types of values as elements for generic operations: -// - scalar : unsigned integral types -// - vector : compiler types using the vector attributes +// - scalar : unsigned integral types, +// - vector : compiler types using the vector attributes or platform builtins, // - array : a cpp::array where T is itself either a scalar or a vector. // The following traits help discriminate between these cases. -template -constexpr bool is_scalar_v = cpp::is_integral_v && cpp::is_unsigned_v; -template -constexpr bool is_vector_v = - cpp::details::is_unqualified_any_of(); +template struct is_scalar : cpp::false_type {}; +template <> struct is_scalar : cpp::true_type {}; +template <> struct is_scalar : cpp::true_type {}; +template <> struct is_scalar : cpp::true_type {}; +#ifdef LLVM_LIBC_HAS_UINT64 +template <> struct is_scalar : cpp::true_type {}; +#endif // LLVM_LIBC_HAS_UINT64 +template constexpr bool is_scalar_v = is_scalar::value; + +template struct is_vector : cpp::false_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template <> struct is_vector : cpp::true_type {}; +template constexpr bool is_vector_v = is_vector::value; template struct is_array : cpp::false_type {}; template struct is_array> { @@ -69,7 +89,7 @@ constexpr bool is_element_type_v = is_scalar_v || is_vector_v || is_array_v; -// +// Helper struct to retrieve the number of elements of an array. template struct array_size {}; template struct array_size> : cpp::integral_constant {}; @@ -114,105 +134,15 @@ } } -static_assert((UINTPTR_MAX == 4294967295U) || - (UINTPTR_MAX == 18446744073709551615UL), - "We currently only support 32- or 64-bit platforms"); - -#if defined(LIBC_TARGET_ARCH_IS_X86_64) || defined(LIBC_TARGET_ARCH_IS_AARCH64) -#define LLVM_LIBC_HAS_UINT64 -#endif - -namespace details { -// Checks that each type is sorted in strictly decreasing order of size. -// i.e. sizeof(First) > sizeof(Second) > ... > sizeof(Last) -template constexpr bool is_decreasing_size() { - return sizeof(First) == 1; -} -template -constexpr bool is_decreasing_size() { - if constexpr (sizeof...(Next) > 0) - return sizeof(First) > sizeof(Second) && is_decreasing_size(); - else - return sizeof(First) > sizeof(Second) && is_decreasing_size(); -} - -template struct Largest; -template struct Largest : cpp::type_identity {}; -template -struct Largest { - using next = Largest; - using type = cpp::conditional_t<(Size >= sizeof(T)), T, typename next::type>; -}; - -} // namespace details - -// 'SupportedTypes' holds a list of natively supported types. -// The types are instanciations of ScalarType or VectorType. -// They should be ordered in strictly decreasing order. -// The 'TypeFor' type retrieves is the largest supported type that can -// handle 'Size' bytes. e.g. -// -// using ST = SupportedTypes, ScalarType>; -// using Type = ST::TypeFor<10>; -// static_assert(cpp:is_same_v>); - -template struct SupportedTypes { - static_assert(details::is_decreasing_size()); - - using MaxType = First; - - template - using TypeFor = typename details::Largest::type; -}; - -// Map from sizes to structures offering static load, store and splat methods. -// Note: On platforms lacking vector support, we use the ArrayType below and -// decompose the operation in smaller pieces. - -// Lists a generic native types to use for Memset and Memmove operations. -// TODO: Inject the native types within Memset and Memmove depending on the -// target architectures and derive MaxSize from it. -using NativeTypeMap = SupportedTypes; - -namespace details { - -// Helper to test if a type is void. -template inline constexpr bool is_void_v = cpp::is_same_v; - -// In case the 'Size' is not supported we can fall back to a sequence of smaller -// operations using the largest natively supported type. -template static constexpr bool useArrayType() { - return (Size > MaxSize) && ((Size % MaxSize) == 0) && - !details::is_void_v>; -} - -// Compute the type to handle an operation of 'Size' bytes knowing that the -// underlying platform only support native types up to MaxSize bytes. -template -using getTypeFor = cpp::conditional_t< - useArrayType(), - cpp::array, Size / MaxSize>, - NativeTypeMap::TypeFor>; - -} // namespace details - /////////////////////////////////////////////////////////////////////////////// // Memset /////////////////////////////////////////////////////////////////////////////// template struct Memset { + static_assert(is_element_type_v); static constexpr size_t SIZE = sizeof(T); LIBC_INLINE static void block(Ptr dst, uint8_t value) { - static_assert(is_element_type_v); if constexpr (is_scalar_v || is_vector_v) { store(dst, splat(value)); } else if constexpr (is_array_v) { @@ -247,9 +177,8 @@ static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS)); LIBC_INLINE static void block(Ptr dst, uint8_t value) { Memset::block(dst, value); - if constexpr (sizeof...(TS) > 0) { + if constexpr (sizeof...(TS) > 0) return MemsetSequence::block(dst + sizeof(T), value); - } } }; @@ -258,6 +187,7 @@ /////////////////////////////////////////////////////////////////////////////// template struct Memmove { + static_assert(is_element_type_v); static constexpr size_t SIZE = sizeof(T); LIBC_INLINE static void block(Ptr dst, CPtr src) { @@ -390,136 +320,299 @@ }; /////////////////////////////////////////////////////////////////////////////// -// Bcmp +// Low level operations for Bcmp and Memcmp that operate on memory locations. /////////////////////////////////////////////////////////////////////////////// -template struct Bcmp { - static constexpr size_t SIZE = Size; - static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64) - ? sizeof(uint64_t) - : sizeof(uint32_t); - - template LIBC_INLINE static uint32_t load_xor(CPtr p1, CPtr p2) { - static_assert(sizeof(T) <= sizeof(uint32_t)); - return load(p1) ^ load(p2); + +// Same as load above but with an offset to the pointer. +// Making the offset explicit hints the compiler to use relevant addressing mode +// consistently. +template LIBC_INLINE static T load(CPtr ptr, size_t offset) { + return ::__llvm_libc::load(ptr + offset); +} + +// Same as above but also makes sure the loaded value is in big endian format. +// This is useful when implementing lexicograhic comparisons as big endian +// scalar comparison directly maps to lexicographic byte comparisons. +template LIBC_INLINE static T load_be(CPtr ptr, size_t offset) { + return Endian::to_big_endian(load(ptr, offset)); +} + +// Equality: returns true iff values at locations (p1 + offset) and (p2 + +// offset) compare equal. +template static bool eq(CPtr p1, CPtr p2, size_t offset); + +// Not equals: returns non-zero iff values at locations (p1 + offset) and (p2 + +// offset) differ. +template static uint32_t neq(CPtr p1, CPtr p2, size_t offset); + +// Lexicographic comparison: +// - returns 0 iff values at locations (p1 + offset) and (p2 + offset) compare +// equal. +// - returns a negative value if value at location (p1 + offset) is +// lexicographically less than value at (p2 + offset). +// - returns a positive value if value at location (p1 + offset) is +// lexicographically greater than value at (p2 + offset). +template +static MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset); + +// Lexicographic comparison of non-equal values: +// - returns a negative value if value at location (p1 + offset) is +// lexicographically less than value at (p2 + offset). +// - returns a positive value if value at location (p1 + offset) is +// lexicographically greater than value at (p2 + offset). +template +static MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); + +/////////////////////////////////////////////////////////////////////////////// +// Memcmp implementation +// +// When building memcmp, not all types are considered equals. +// +// For instance, the lexicographic comparison of two uint8_t can be implemented +// as a simple subtraction, but for wider operations the logic can be much more +// involving, especially on little endian platforms. +// +// For such wider types it is a good strategy to test for equality first and +// only do the expensive lexicographic comparison if necessary. +// +// Decomposing the algorithm like this for wider types allows us to have +// efficient implementation of higher order functions like 'head_tail' or +// 'loop_and_tail'. +/////////////////////////////////////////////////////////////////////////////// + +// Type traits to decide whether we can use 'cmp' directly or if we need to +// split the computation. +template struct cmp_is_expensive; +template <> struct cmp_is_expensive : public cpp::false_type {}; +template <> struct cmp_is_expensive : public cpp::false_type {}; +template <> struct cmp_is_expensive : public cpp::false_type {}; +#ifdef LLVM_LIBC_HAS_UINT64 +template <> struct cmp_is_expensive : public cpp::true_type {}; +#endif // LLVM_LIBC_HAS_UINT64 + +template struct Memcmp { + static_assert(is_element_type_v); + static constexpr size_t SIZE = sizeof(T); + +private: + LIBC_INLINE static MemcmpReturnType block_offset(CPtr p1, CPtr p2, + size_t offset) { + if constexpr (cmp_is_expensive::value) { + if (!eq(p1, p2, offset)) + return cmp_neq(p1, p2, offset); + return MemcmpReturnType::ZERO(); + } else { + return cmp(p1, p2, offset); + } } - template - LIBC_INLINE static uint32_t load_not_equal(CPtr p1, CPtr p2) { - return load(p1) != load(p2); +public: + LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) { + return block_offset(p1, p2, 0); } - LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) { - if constexpr (Size == 1) { - return load_xor(p1, p2); - } else if constexpr (Size == 2) { - return load_xor(p1, p2); - } else if constexpr (Size == 4) { - return load_xor(p1, p2); - } else if constexpr (Size == 8) { - return load_not_equal(p1, p2); - } else if constexpr (details::useArrayType()) { - for (size_t offset = 0; offset < Size; offset += MaxSize) - if (auto value = Bcmp::block(p1 + offset, p2 + offset)) - return value; + LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2, + size_t count) { + if constexpr (cmp_is_expensive::value) { + if (!eq(p1, p2, 0)) + return cmp_neq(p1, p2, 0); } else { - deferred_static_assert("Unimplemented Size"); + if (const auto value = cmp(p1, p2, 0)) + return value; } - return BcmpReturnType::ZERO(); + return block_offset(p1, p2, count - SIZE); // tail } - LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) { - return block(p1 + count - SIZE, p2 + count - SIZE); + LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2, + size_t count) { + if constexpr (SIZE > 1) { + const size_t limit = count - SIZE; + LIBC_LOOP_NOUNROLL + for (size_t offset = 0; offset < limit; offset += SIZE) { + if (!eq(p1, p2, offset)) { + if constexpr (cmp_is_expensive::value) { + return cmp_neq(p1, p2, offset); + } else { + return cmp(p1, p2, offset); + } + } + } + return block_offset(p1, p2, limit); // tail + } else { + // No need for a tail operation when SIZE == 1. + LIBC_LOOP_NOUNROLL + for (size_t offset = 0; offset < count; offset += SIZE) + if (auto value = cmp(p1, p2, offset)) + return value; + return MemcmpReturnType::ZERO(); + } } - LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) { - return block(p1, p2) | tail(p1, p2, count); + LIBC_INLINE static MemcmpReturnType + loop_and_tail_align_above(size_t threshold, CPtr p1, CPtr p2, size_t count) { + const AlignHelper helper(p1); + if (LIBC_UNLIKELY(count >= threshold) && helper.not_aligned()) { + if (auto value = block(p1, p2)) + return value; + adjust(helper.offset(), p1, p2, count); + } + return loop_and_tail(p1, p2, count); } +}; - LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2, - size_t count) { - static_assert(Size > 1, "a loop of size 1 does not need tail"); - size_t offset = 0; - do { - if (auto value = block(p1 + offset, p2 + offset)) +template struct MemcmpSequence { + static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS)); + LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) { + if constexpr (cmp_is_expensive::value) { + if (!eq(p1, p2, 0)) + return cmp_neq(p1, p2, 0); + } else { + if (auto value = cmp(p1, p2, 0)) return value; - offset += SIZE; - } while (offset < count - SIZE); - return tail(p1, p2, count); + } + if constexpr (sizeof...(TS) > 0) + return MemcmpSequence::block(p1 + sizeof(T), p2 + sizeof(T)); + else + return MemcmpReturnType::ZERO(); } }; /////////////////////////////////////////////////////////////////////////////// -// Memcmp +// Bcmp /////////////////////////////////////////////////////////////////////////////// -template struct Memcmp { - static constexpr size_t SIZE = Size; - static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64) - ? sizeof(uint64_t) - : sizeof(uint32_t); - - template LIBC_INLINE static T load_be(CPtr ptr) { - return Endian::to_big_endian(load(ptr)); +template struct Bcmp { + static_assert(is_element_type_v); + static constexpr size_t SIZE = sizeof(T); + + LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) { + return neq(p1, p2, 0); } - template - LIBC_INLINE static MemcmpReturnType load_be_diff(CPtr p1, CPtr p2) { - return load_be(p1) - load_be(p2); + LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) { + const size_t tail_offset = count - SIZE; + return neq(p1, p2, tail_offset); } - template - LIBC_INLINE static MemcmpReturnType load_be_cmp(CPtr p1, CPtr p2) { - const auto la = load_be(p1); - const auto lb = load_be(p2); - return la > lb ? 1 : la < lb ? -1 : 0; + LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) { + if (const auto value = neq(p1, p2, 0)) + return value; + return tail(p1, p2, count); } - LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) { - if constexpr (Size == 1) { - return load_be_diff(p1, p2); - } else if constexpr (Size == 2) { - return load_be_diff(p1, p2); - } else if constexpr (Size == 4) { - return load_be_cmp(p1, p2); - } else if constexpr (Size == 8) { - return load_be_cmp(p1, p2); - } else if constexpr (details::useArrayType()) { - for (size_t offset = 0; offset < Size; offset += MaxSize) - if (Bcmp::block(p1 + offset, p2 + offset)) - return Memcmp::block(p1 + offset, p2 + offset); - return MemcmpReturnType::ZERO(); - } else if constexpr (Size == 3) { - if (auto value = Memcmp<2>::block(p1, p2)) - return value; - return Memcmp<1>::block(p1 + 2, p2 + 2); + LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2, + size_t count) { + if constexpr (SIZE > 1) { + const size_t limit = count - SIZE; + LIBC_LOOP_NOUNROLL + for (size_t offset = 0; offset < limit; offset += SIZE) + if (const auto value = neq(p1, p2, offset)) + return value; + return tail(p1, p2, count); } else { - deferred_static_assert("Unimplemented Size"); + // No need for a tail operation when SIZE == 1. + LIBC_LOOP_NOUNROLL + for (size_t offset = 0; offset < count; offset += SIZE) + if (const auto value = neq(p1, p2, offset)) + return value; + return BcmpReturnType::ZERO(); } } - LIBC_INLINE static MemcmpReturnType tail(CPtr p1, CPtr p2, size_t count) { - return block(p1 + count - SIZE, p2 + count - SIZE); + LIBC_INLINE static BcmpReturnType + loop_and_tail_align_above(size_t threshold, CPtr p1, CPtr p2, size_t count) { + static_assert(SIZE > 1, + "No need to align when processing one byte at a time"); + const AlignHelper helper(p1); + if (LIBC_UNLIKELY(count >= threshold) && helper.not_aligned()) { + if (auto value = block(p1, p2)) + return value; + adjust(helper.offset(), p1, p2, count); + } + return loop_and_tail(p1, p2, count); } +}; - LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2, - size_t count) { - if (auto value = block(p1, p2)) +template struct BcmpSequence { + static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS)); + LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) { + if (auto value = neq(p1, p2, 0)) return value; - return tail(p1, p2, count); - } - - LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2, - size_t count) { - static_assert(Size > 1, "a loop of size 1 does not need tail"); - size_t offset = 0; - do { - if (auto value = block(p1 + offset, p2 + offset)) - return value; - offset += SIZE; - } while (offset < count - SIZE); - return tail(p1, p2, count); + if constexpr (sizeof...(TS) > 0) + return BcmpSequence::block(p1 + sizeof(T), p2 + sizeof(T)); + else + return BcmpReturnType::ZERO(); } }; +/////////////////////////////////////////////////////////////////////////////// +// Specializations for uint8_t +template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) == load(p2, offset); +} +template <> LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) ^ load(p2, offset); +} +template <> +LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset) { + return static_cast(load(p1, offset)) - + static_cast(load(p2, offset)); +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); + +/////////////////////////////////////////////////////////////////////////////// +// Specializations for uint16_t +template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) == load(p2, offset); +} +template <> +LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) ^ load(p2, offset); +} +template <> +LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset) { + return static_cast(load_be(p1, offset)) - + static_cast(load_be(p2, offset)); +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); + +/////////////////////////////////////////////////////////////////////////////// +// Specializations for uint32_t +template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) == load(p2, offset); +} +template <> +LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) ^ load(p2, offset); +} +template <> +LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset) { + const auto a = load_be(p1, offset); + const auto b = load_be(p2, offset); + return cmp_uint32_t(a, b); +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, size_t offset); + +/////////////////////////////////////////////////////////////////////////////// +// Specializations for uint64_t +template <> LIBC_INLINE bool eq(CPtr p1, CPtr p2, size_t offset) { + return load(p1, offset) == load(p2, offset); +} +template <> +LIBC_INLINE uint32_t neq(CPtr p1, CPtr p2, size_t offset) { + return !eq(p1, p2, offset); +} +template <> +LIBC_INLINE MemcmpReturnType cmp(CPtr p1, CPtr p2, size_t offset); +template <> +LIBC_INLINE MemcmpReturnType cmp_neq(CPtr p1, CPtr p2, + size_t offset) { + const auto a = load_be(p1, offset); + const auto b = load_be(p2, offset); + return cmp_neq_uint64_t(a, b); +} } // namespace __llvm_libc::generic #endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H diff --git a/libc/src/string/memory_utils/op_x86.h b/libc/src/string/memory_utils/op_x86.h --- a/libc/src/string/memory_utils/op_x86.h +++ b/libc/src/string/memory_utils/op_x86.h @@ -40,11 +40,13 @@ namespace __llvm_libc::x86 { // A set of constants to check compile time features. -static inline constexpr bool kSse2 = LLVM_LIBC_IS_DEFINED(__SSE2__); -static inline constexpr bool kAvx = LLVM_LIBC_IS_DEFINED(__AVX__); -static inline constexpr bool kAvx2 = LLVM_LIBC_IS_DEFINED(__AVX2__); -static inline constexpr bool kAvx512F = LLVM_LIBC_IS_DEFINED(__AVX512F__); -static inline constexpr bool kAvx512BW = LLVM_LIBC_IS_DEFINED(__AVX512BW__); +static LIBC_INLINE constexpr bool kSse2 = LLVM_LIBC_IS_DEFINED(__SSE2__); +static LIBC_INLINE constexpr bool kSse41 = LLVM_LIBC_IS_DEFINED(__SSE4_1__); +static LIBC_INLINE constexpr bool kAvx = LLVM_LIBC_IS_DEFINED(__AVX__); +static LIBC_INLINE constexpr bool kAvx2 = LLVM_LIBC_IS_DEFINED(__AVX2__); +static LIBC_INLINE constexpr bool kAvx512F = LLVM_LIBC_IS_DEFINED(__AVX512F__); +static LIBC_INLINE constexpr bool kAvx512BW = + LLVM_LIBC_IS_DEFINED(__AVX512BW__); /////////////////////////////////////////////////////////////////////////////// // Memcpy repmovsb implementation @@ -54,220 +56,142 @@ } }; -/////////////////////////////////////////////////////////////////////////////// -// Bcmp - -// Base implementation for the Bcmp specializations. -// - BlockSize is either 16, 32 or 64 depending on the available compile time -// features, it is used to switch between "single native operation" or a -// "sequence of native operations". -// - BlockBcmp is the function that implements the bcmp logic. -template struct BcmpImpl { - static constexpr size_t SIZE = Size; - LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) { - if constexpr (Size == BlockSize) { - return BlockBcmp(p1, p2); - } else if constexpr (Size % BlockSize == 0) { - for (size_t offset = 0; offset < Size; offset += BlockSize) - if (auto value = BlockBcmp(p1 + offset, p2 + offset)) - return value; - } else { - deferred_static_assert("SIZE not implemented"); - } - return BcmpReturnType::ZERO(); - } - - LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) { - return block(p1 + count - Size, p2 + count - Size); - } - - LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) { - return block(p1, p2) | tail(p1, p2, count); - } +} // namespace __llvm_libc::x86 - LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2, - size_t count) { - static_assert(Size > 1, "a loop of size 1 does not need tail"); - size_t offset = 0; - do { - if (auto value = block(p1 + offset, p2 + offset)) - return value; - offset += Size; - } while (offset < count - Size); - return tail(p1, p2, count); - } -}; +namespace __llvm_libc::generic { -namespace sse2 { -LIBC_INLINE BcmpReturnType bcmp16(CPtr p1, CPtr p2) { -#if defined(__SSE2__) - using T = char __attribute__((__vector_size__(16))); - // A mask indicating which bytes differ after loading 16 bytes from p1 and p2. - const int mask = - _mm_movemask_epi8(cpp::bit_cast<__m128i>(load(p1) != load(p2))); - return static_cast(mask); -#else - (void)p1; - (void)p2; - return BcmpReturnType::ZERO(); -#endif // defined(__SSE2__) +/////////////////////////////////////////////////////////////////////////////// +// Specializations for __m128i +#if defined(__SSE4_1__) +template <> struct is_vector<__m128i> : cpp::true_type {}; +template <> struct cmp_is_expensive<__m128i> : cpp::true_type {}; +LIBC_INLINE __m128i bytewise_max(__m128i a, __m128i b) { + return _mm_max_epu8(a, b); } -template using Bcmp = BcmpImpl; -} // namespace sse2 - -namespace avx2 { -LIBC_INLINE BcmpReturnType bcmp32(CPtr p1, CPtr p2) { -#if defined(__AVX2__) - using T = char __attribute__((__vector_size__(32))); - // A mask indicating which bytes differ after loading 32 bytes from p1 and p2. - const int mask = - _mm256_movemask_epi8(cpp::bit_cast<__m256i>(load(p1) != load(p2))); - // _mm256_movemask_epi8 returns an int but it is to be interpreted as a 32-bit - // mask. - return static_cast(mask); -#else - (void)p1; - (void)p2; - return BcmpReturnType::ZERO(); -#endif // defined(__AVX2__) +LIBC_INLINE __m128i bytewise_reverse(__m128i value) { + return _mm_shuffle_epi8(value, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // + 8, 9, 10, 11, 12, 13, 14, 15)); } -template using Bcmp = BcmpImpl; -} // namespace avx2 - -namespace avx512bw { -LIBC_INLINE BcmpReturnType bcmp64(CPtr p1, CPtr p2) { -#if defined(__AVX512BW__) - using T = char __attribute__((__vector_size__(64))); - // A mask indicating which bytes differ after loading 64 bytes from p1 and p2. - const uint64_t mask = _mm512_cmpneq_epi8_mask( - cpp::bit_cast<__m512i>(load(p1)), cpp::bit_cast<__m512i>(load(p2))); - const bool mask_is_set = mask != 0; - return static_cast(mask_is_set); -#else - (void)p1; - (void)p2; - return BcmpReturnType::ZERO(); -#endif // defined(__AVX512BW__) +LIBC_INLINE uint16_t big_endian_cmp_mask(__m128i max, __m128i value) { + return _mm_movemask_epi8(bytewise_reverse(_mm_cmpeq_epi8(max, value))); } -template using Bcmp = BcmpImpl; -} // namespace avx512bw - -// Assuming that the mask is non zero, the index of the first mismatching byte -// is the number of trailing zeros in the mask. Trailing zeros and not leading -// zeros because the x86 architecture is little endian. -LIBC_INLINE MemcmpReturnType char_diff_no_zero(CPtr p1, CPtr p2, - uint64_t mask) { - const size_t diff_index = __builtin_ctzll(mask); - const int16_t ca = cpp::to_integer(p1[diff_index]); - const int16_t cb = cpp::to_integer(p2[diff_index]); - return ca - cb; +template <> LIBC_INLINE bool eq<__m128i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m128i>(p1, offset); + const auto b = load<__m128i>(p2, offset); + const auto xored = _mm_xor_si128(a, b); + return _mm_testz_si128(xored, xored) == 1; // 1 iff xored == 0 +} +template <> LIBC_INLINE uint32_t neq<__m128i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m128i>(p1, offset); + const auto b = load<__m128i>(p2, offset); + const auto xored = _mm_xor_si128(a, b); + return _mm_testz_si128(xored, xored) == 0; // 0 iff xored != 0 +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq<__m128i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m128i>(p1, offset); + const auto b = load<__m128i>(p2, offset); + const auto vmax = bytewise_max(a, b); + const auto le = big_endian_cmp_mask(vmax, b); + const auto ge = big_endian_cmp_mask(vmax, a); + static_assert(cpp::is_same_v, uint16_t>); + return static_cast(ge) - static_cast(le); } +#endif // __SSE4_1__ /////////////////////////////////////////////////////////////////////////////// -// Memcmp - -// Base implementation for the Memcmp specializations. -// - BlockSize is either 16, 32 or 64 depending on the available compile time -// features, it is used to switch between "single native operation" or a -// "sequence of native operations". -// - BlockMemcmp is the function that implements the memcmp logic. -// - BlockBcmp is the function that implements the bcmp logic. -template -struct MemcmpImpl { - static constexpr size_t SIZE = Size; - LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) { - if constexpr (Size == BlockSize) { - return BlockMemcmp(p1, p2); - } else if constexpr (Size % BlockSize == 0) { - for (size_t offset = 0; offset < Size; offset += BlockSize) - if (auto value = BlockBcmp(p1 + offset, p2 + offset)) - return BlockMemcmp(p1 + offset, p2 + offset); - } else { - deferred_static_assert("SIZE not implemented"); - } - return MemcmpReturnType::ZERO(); - } - - LIBC_INLINE static MemcmpReturnType tail(CPtr p1, CPtr p2, size_t count) { - return block(p1 + count - Size, p2 + count - Size); - } - - LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2, - size_t count) { - if (auto value = block(p1, p2)) - return value; - return tail(p1, p2, count); - } - - LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2, - size_t count) { - static_assert(Size > 1, "a loop of size 1 does not need tail"); - size_t offset = 0; - do { - if (auto value = block(p1 + offset, p2 + offset)) - return value; - offset += Size; - } while (offset < count - Size); - return tail(p1, p2, count); - } -}; - -namespace sse2 { -LIBC_INLINE MemcmpReturnType memcmp16(CPtr p1, CPtr p2) { -#if defined(__SSE2__) - using T = char __attribute__((__vector_size__(16))); - // A mask indicating which bytes differ after loading 16 bytes from p1 and p2. - if (int mask = - _mm_movemask_epi8(cpp::bit_cast<__m128i>(load(p1) != load(p2)))) - return char_diff_no_zero(p1, p2, mask); - return MemcmpReturnType::ZERO(); -#else - (void)p1; - (void)p2; - return MemcmpReturnType::ZERO(); -#endif // defined(__SSE2__) +// Specializations for __m256i +#if defined(__AVX__) +template <> struct is_vector<__m256i> : cpp::true_type {}; +template <> struct cmp_is_expensive<__m256i> : cpp::true_type {}; +template <> LIBC_INLINE bool eq<__m256i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m256i>(p1, offset); + const auto b = load<__m256i>(p2, offset); + const auto xored = _mm256_castps_si256( + _mm256_xor_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b))); + return _mm256_testz_si256(xored, xored) == 1; // 1 iff xored == 0 } -template using Memcmp = MemcmpImpl; -} // namespace sse2 +template <> LIBC_INLINE uint32_t neq<__m256i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m256i>(p1, offset); + const auto b = load<__m256i>(p2, offset); + const auto xored = _mm256_castps_si256( + _mm256_xor_ps(_mm256_castsi256_ps(a), _mm256_castsi256_ps(b))); + return _mm256_testz_si256(xored, xored) == 0; // 0 iff xored != 0 +} +#endif // __AVX__ -namespace avx2 { -LIBC_INLINE MemcmpReturnType memcmp32(CPtr p1, CPtr p2) { #if defined(__AVX2__) - using T = char __attribute__((__vector_size__(32))); - // A mask indicating which bytes differ after loading 32 bytes from p1 and p2. - if (int mask = _mm256_movemask_epi8( - cpp::bit_cast<__m256i>(load(p1) != load(p2)))) - return char_diff_no_zero(p1, p2, mask); - return MemcmpReturnType::ZERO(); -#else - (void)p1; - (void)p2; - return MemcmpReturnType::ZERO(); -#endif // defined(__AVX2__) +LIBC_INLINE __m256i bytewise_max(__m256i a, __m256i b) { + return _mm256_max_epu8(a, b); +} +LIBC_INLINE __m256i bytewise_reverse(__m256i value) { + return _mm256_shuffle_epi8(value, + _mm256_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // + 8, 9, 10, 11, 12, 13, 14, 15, // + 16, 17, 18, 19, 20, 21, 22, 23, // + 24, 25, 26, 27, 28, 29, 30, 31)); } -template using Memcmp = MemcmpImpl; -} // namespace avx2 +LIBC_INLINE uint32_t big_endian_cmp_mask(__m256i max, __m256i value) { + return _mm256_movemask_epi8(bytewise_reverse(_mm256_cmpeq_epi8(max, value))); +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq<__m256i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m256i>(p1, offset); + const auto b = load<__m256i>(p2, offset); + const auto vmax = bytewise_max(a, b); + const auto le = big_endian_cmp_mask(vmax, b); + const auto ge = big_endian_cmp_mask(vmax, a); + static_assert(cpp::is_same_v, uint32_t>); + return cmp_uint32_t(ge, le); +} +#endif // __AVX2__ -namespace avx512bw { -LIBC_INLINE MemcmpReturnType memcmp64(CPtr p1, CPtr p2) { +/////////////////////////////////////////////////////////////////////////////// +// Specializations for __m512i #if defined(__AVX512BW__) - using T = char __attribute__((__vector_size__(64))); - // A mask indicating which bytes differ after loading 64 bytes from p1 and p2. - if (uint64_t mask = - _mm512_cmpneq_epi8_mask(cpp::bit_cast<__m512i>(load(p1)), - cpp::bit_cast<__m512i>(load(p2)))) - return char_diff_no_zero(p1, p2, mask); - return MemcmpReturnType::ZERO(); -#else - (void)p1; - (void)p2; - return MemcmpReturnType::ZERO(); -#endif // defined(__AVX512BW__) +template <> struct is_vector<__m512i> : cpp::true_type {}; +template <> struct cmp_is_expensive<__m512i> : cpp::true_type {}; +LIBC_INLINE __m512i bytewise_max(__m512i a, __m512i b) { + return _mm512_max_epu8(a, b); +} +LIBC_INLINE __m512i bytewise_reverse(__m512i value) { + return _mm512_shuffle_epi8(value, + _mm512_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, // + 8, 9, 10, 11, 12, 13, 14, 15, // + 16, 17, 18, 19, 20, 21, 22, 23, // + 24, 25, 26, 27, 28, 29, 30, 31, // + 32, 33, 34, 35, 36, 37, 38, 39, // + 40, 41, 42, 43, 44, 45, 46, 47, // + 48, 49, 50, 51, 52, 53, 54, 55, // + 56, 57, 58, 59, 60, 61, 62, 63)); +} +LIBC_INLINE uint64_t big_endian_cmp_mask(__m512i max, __m512i value) { + return _mm512_cmpeq_epi8_mask(bytewise_reverse(max), bytewise_reverse(value)); } -template using Memcmp = MemcmpImpl; -} // namespace avx512bw +template <> LIBC_INLINE bool eq<__m512i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m512i>(p1, offset); + const auto b = load<__m512i>(p2, offset); + return _mm512_cmpneq_epi8_mask(a, b) == 0; +} +template <> LIBC_INLINE uint32_t neq<__m512i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m512i>(p1, offset); + const auto b = load<__m512i>(p2, offset); + const uint64_t xored = _mm512_cmpneq_epi8_mask(a, b); + return (xored >> 32) | (xored & 0xFFFFFFFF); +} +template <> +LIBC_INLINE MemcmpReturnType cmp_neq<__m512i>(CPtr p1, CPtr p2, size_t offset) { + const auto a = load<__m512i>(p1, offset); + const auto b = load<__m512i>(p2, offset); + const auto vmax = bytewise_max(a, b); + const auto le = big_endian_cmp_mask(vmax, b); + const auto ge = big_endian_cmp_mask(vmax, a); + static_assert(cpp::is_same_v, uint64_t>); + return cmp_neq_uint64_t(ge, le); +} +#endif // __AVX512BW__ -} // namespace __llvm_libc::x86 +} // namespace __llvm_libc::generic #endif // LIBC_TARGET_ARCH_IS_X86_64 diff --git a/libc/src/string/memory_utils/utils.h b/libc/src/string/memory_utils/utils.h --- a/libc/src/string/memory_utils/utils.h +++ b/libc/src/string/memory_utils/utils.h @@ -11,9 +11,11 @@ #include "src/__support/CPP/bit.h" #include "src/__support/CPP/cstddef.h" +#include "src/__support/CPP/limits.h" // cpp::numeric_limits #include "src/__support/CPP/type_traits.h" -#include "src/__support/macros/attributes.h" //LIBC_INLINE -#include "src/__support/macros/config.h" // LIBC_HAS_BUILTIN +#include "src/__support/macros/attributes.h" // LIBC_INLINE +#include "src/__support/macros/config.h" // LIBC_HAS_BUILTIN +#include "src/__support/macros/properties/architectures.h" #include // size_t #include // intptr_t / uintptr_t @@ -140,6 +142,39 @@ using MemcmpReturnType = StrictIntegralType; using BcmpReturnType = StrictIntegralType; +// This implements the semantic of 'memcmp' returning a negative value when 'a' +// is less than 'b', '0' when 'a' equals 'b' and a positive number otherwise. +LIBC_INLINE MemcmpReturnType cmp_uint32_t(uint32_t a, uint32_t b) { + // We perform the difference as an uint64_t. + const int64_t diff = static_cast(a) - static_cast(b); + // And reduce the uint64_t into an uint32_t. + // TODO: provide a detailed explanation. + return static_cast((diff >> 1) | (diff & 0xFFFF)); +} + +// Returns a negative value if 'a' is less than 'b' and a positive value +// otherwise. This implements the semantic of 'memcmp' when we know that 'a' and +// 'b' differ. +LIBC_INLINE MemcmpReturnType cmp_neq_uint64_t(uint64_t a, uint64_t b) { +#if defined(LIBC_TARGET_ARCH_IS_X86_64) + // On x86, we choose the returned values so that they are just one unit appart + // as this allows for better code generation. + static constexpr int32_t POSITIVE = cpp::numeric_limits::max(); + static constexpr int32_t NEGATIVE = cpp::numeric_limits::min(); + static_assert(cpp::bit_cast(NEGATIVE) - + cpp::bit_cast(POSITIVE) == + 1); +#else + // On RISC-V we simply use '1' and '-1' as it leads to branchless code. + // On ARMv8, both strategies lead to the same performance. + static constexpr int32_t POSITIVE = 1; + static constexpr int32_t NEGATIVE = -1; +#endif + static_assert(POSITIVE > 0); + static_assert(NEGATIVE < 0); + return a < b ? NEGATIVE : POSITIVE; +} + // Loads bytes from memory (possibly unaligned) and materializes them as // type. template LIBC_INLINE T load(CPtr ptr) { @@ -196,6 +231,16 @@ deferred_static_assert("AlignOn must be either Arg::P1 or Arg::P2"); } +template struct AlignHelper { + AlignHelper(CPtr ptr) : offset_(distance_to_next_aligned(ptr)) {} + + LIBC_INLINE bool not_aligned() const { return offset_ != SIZE; } + LIBC_INLINE uintptr_t offset() const { return offset_; } + +private: + uintptr_t offset_; +}; + } // namespace __llvm_libc #endif // LLVM_LIBC_SRC_MEMORY_UTILS_UTILS_H diff --git a/libc/src/string/memory_utils/x86_64/memcmp_implementations.h b/libc/src/string/memory_utils/x86_64/memcmp_implementations.h --- a/libc/src/string/memory_utils/x86_64/memcmp_implementations.h +++ b/libc/src/string/memory_utils/x86_64/memcmp_implementations.h @@ -18,79 +18,76 @@ [[maybe_unused]] LIBC_INLINE MemcmpReturnType inline_memcmp_generic_gt16(CPtr p1, CPtr p2, size_t count) { - if (LIBC_UNLIKELY(count >= 384)) { - if (auto value = generic::Memcmp<16>::block(p1, p2)) - return value; - align_to_next_boundary<16, Arg::P1>(p1, p2, count); - } - return generic::Memcmp<16>::loop_and_tail(p1, p2, count); + return generic::Memcmp::loop_and_tail_align_above(384, p1, p2, + count); } +#if defined(__SSE4_1__) [[maybe_unused]] LIBC_INLINE MemcmpReturnType -inline_memcmp_x86_sse2_gt16(CPtr p1, CPtr p2, size_t count) { - if (LIBC_UNLIKELY(count >= 384)) { - if (auto value = x86::sse2::Memcmp<16>::block(p1, p2)) - return value; - align_to_next_boundary<16, Arg::P1>(p1, p2, count); - } - return x86::sse2::Memcmp<16>::loop_and_tail(p1, p2, count); +inline_memcmp_x86_sse41_gt16(CPtr p1, CPtr p2, size_t count) { + return generic::Memcmp<__m128i>::loop_and_tail_align_above(384, p1, p2, + count); } +#endif // __SSE4_1__ +#if defined(__AVX2__) [[maybe_unused]] LIBC_INLINE MemcmpReturnType inline_memcmp_x86_avx2_gt16(CPtr p1, CPtr p2, size_t count) { if (count <= 32) - return x86::sse2::Memcmp<16>::head_tail(p1, p2, count); + return generic::Memcmp<__m128i>::head_tail(p1, p2, count); if (count <= 64) - return x86::avx2::Memcmp<32>::head_tail(p1, p2, count); - if (count <= 128) - return x86::avx2::Memcmp<64>::head_tail(p1, p2, count); - if (LIBC_UNLIKELY(count >= 384)) { - if (auto value = x86::avx2::Memcmp<32>::block(p1, p2)) - return value; - align_to_next_boundary<32, Arg::P1>(p1, p2, count); - } - return x86::avx2::Memcmp<32>::loop_and_tail(p1, p2, count); + return generic::Memcmp<__m256i>::head_tail(p1, p2, count); + return generic::Memcmp<__m256i>::loop_and_tail_align_above(384, p1, p2, + count); } +#endif // __AVX2__ +#if defined(__AVX512BW__) [[maybe_unused]] LIBC_INLINE MemcmpReturnType inline_memcmp_x86_avx512bw_gt16(CPtr p1, CPtr p2, size_t count) { if (count <= 32) - return x86::sse2::Memcmp<16>::head_tail(p1, p2, count); + return generic::Memcmp<__m128i>::head_tail(p1, p2, count); if (count <= 64) - return x86::avx2::Memcmp<32>::head_tail(p1, p2, count); + return generic::Memcmp<__m256i>::head_tail(p1, p2, count); if (count <= 128) - return x86::avx512bw::Memcmp<64>::head_tail(p1, p2, count); - if (LIBC_UNLIKELY(count >= 384)) { - if (auto value = x86::avx512bw::Memcmp<64>::block(p1, p2)) - return value; - align_to_next_boundary<64, Arg::P1>(p1, p2, count); - } - return x86::avx512bw::Memcmp<64>::loop_and_tail(p1, p2, count); + return generic::Memcmp<__m512i>::head_tail(p1, p2, count); + return generic::Memcmp<__m512i>::loop_and_tail_align_above(384, p1, p2, + count); } +#endif // __AVX512BW__ LIBC_INLINE MemcmpReturnType inline_memcmp_x86(CPtr p1, CPtr p2, size_t count) { - if (count == 0) return MemcmpReturnType::ZERO(); if (count == 1) - return generic::Memcmp<1>::block(p1, p2); + return generic::Memcmp::block(p1, p2); if (count == 2) - return generic::Memcmp<2>::block(p1, p2); + return generic::Memcmp::block(p1, p2); if (count == 3) - return generic::Memcmp<3>::block(p1, p2); - if (count <= 8) - return generic::Memcmp<4>::head_tail(p1, p2, count); + return generic::MemcmpSequence::block(p1, p2); + if (count == 4) + return generic::Memcmp::block(p1, p2); + if (count == 5) + return generic::MemcmpSequence::block(p1, p2); + if (count == 6) + return generic::MemcmpSequence::block(p1, p2); + if (count == 7) + return generic::Memcmp::head_tail(p1, p2, 7); + if (count == 8) + return generic::Memcmp::block(p1, p2); if (count <= 16) - return generic::Memcmp<8>::head_tail(p1, p2, count); - if constexpr (x86::kAvx512BW) - return inline_memcmp_x86_avx512bw_gt16(p1, p2, count); - else if constexpr (x86::kAvx2) - return inline_memcmp_x86_avx2_gt16(p1, p2, count); - else if constexpr (x86::kSse2) - return inline_memcmp_x86_sse2_gt16(p1, p2, count); - else - return inline_memcmp_generic_gt16(p1, p2, count); + return generic::Memcmp::head_tail(p1, p2, count); +#if defined(__AVX512BW__) + return inline_memcmp_x86_avx512bw_gt16(p1, p2, count); +#elif defined(__AVX2__) + return inline_memcmp_x86_avx2_gt16(p1, p2, count); +#elif defined(__SSE4_1__) + return inline_memcmp_x86_sse41_gt16(p1, p2, count); +#else + return inline_memcmp_generic_gt16(p1, p2, count); +#endif } + } // namespace __llvm_libc #endif // LIBC_SRC_STRING_MEMORY_UTILS_X86_64_MEMCMP_IMPLEMENTATIONS_H diff --git a/libc/test/src/string/memory_utils/op_tests.cpp b/libc/test/src/string/memory_utils/op_tests.cpp --- a/libc/test/src/string/memory_utils/op_tests.cpp +++ b/libc/test/src/string/memory_utils/op_tests.cpp @@ -198,35 +198,34 @@ } using BcmpImplementations = testing::TypeList< -#ifdef __SSE2__ - x86::sse2::Bcmp<16>, // - x86::sse2::Bcmp<32>, // - x86::sse2::Bcmp<64>, // - x86::sse2::Bcmp<128>, // -#endif +#ifdef LIBC_TARGET_ARCH_IS_X86_64 +#ifdef __SSE4_1__ + generic::Bcmp<__m128i>, +#endif // __SSE4_1__ #ifdef __AVX2__ - x86::avx2::Bcmp<32>, // - x86::avx2::Bcmp<64>, // - x86::avx2::Bcmp<128>, // -#endif + generic::Bcmp<__m256i>, +#endif // __AVX2__ #ifdef __AVX512BW__ - x86::avx512bw::Bcmp<64>, // - x86::avx512bw::Bcmp<128>, // -#endif + generic::Bcmp<__m512i>, +#endif // __AVX512BW__ + +#endif // LIBC_TARGET_ARCH_IS_X86_64 #ifdef LIBC_TARGET_ARCH_IS_AARCH64 aarch64::Bcmp<16>, // - aarch64::Bcmp<32>, // -#endif + aarch64::Bcmp<32>, +#endif // LIBC_TARGET_ARCH_IS_AARCH64 #ifdef LLVM_LIBC_HAS_UINT64 - generic::Bcmp<8>, // + generic::Bcmp, // #endif - generic::Bcmp<1>, // - generic::Bcmp<2>, // - generic::Bcmp<4>, // - generic::Bcmp<16>, // - generic::Bcmp<32>, // - generic::Bcmp<64> // - >; + generic::Bcmp, // + generic::Bcmp, // + generic::Bcmp, // + generic::BcmpSequence, // + generic::BcmpSequence, // + generic::BcmpSequence, // + generic::BcmpSequence, // + generic::BcmpSequence, // + generic::BcmpSequence>; // Adapt CheckBcmp signature to op implementation signatures. template @@ -252,7 +251,8 @@ ASSERT_TRUE((CheckBcmp(span1, span2, kSize))); } } - { // Test head tail operations from kSize to 2 * kSize. + if constexpr (has_head_tail::value) { + // Test head tail operations from kSize to 2 * kSize. static constexpr auto HeadTailImpl = CmpAdaptor; Buffer Buffer1(2 * kSize); Buffer Buffer2(2 * kSize); @@ -263,7 +263,8 @@ ASSERT_TRUE((CheckBcmp(span1, span2, size))); } } - { // Test loop operations from kSize to 3 * kSize. + if constexpr (has_loop_and_tail::value) { + // Test loop operations from kSize to 3 * kSize. if constexpr (kSize > 1) { static constexpr auto LoopImpl = CmpAdaptor; Buffer Buffer1(3 * kSize); @@ -279,31 +280,27 @@ } using MemcmpImplementations = testing::TypeList< +#ifdef LIBC_TARGET_ARCH_IS_X86_64 #ifdef __SSE2__ - x86::sse2::Memcmp<16>, // - x86::sse2::Memcmp<32>, // - x86::sse2::Memcmp<64>, // - x86::sse2::Memcmp<128>, // + generic::Memcmp<__m128i>, // #endif #ifdef __AVX2__ - x86::avx2::Memcmp<32>, // - x86::avx2::Memcmp<64>, // - x86::avx2::Memcmp<128>, // + generic::Memcmp<__m256i>, // #endif #ifdef __AVX512BW__ - x86::avx512bw::Memcmp<64>, // - x86::avx512bw::Memcmp<128>, // + generic::Memcmp<__m512i>, // #endif +#endif // LIBC_TARGET_ARCH_IS_X86_64 #ifdef LLVM_LIBC_HAS_UINT64 - generic::Memcmp<8>, // + generic::Memcmp, // #endif - generic::Memcmp<1>, // - generic::Memcmp<2>, // - generic::Memcmp<3>, // - generic::Memcmp<4>, // - generic::Memcmp<16>, // - generic::Memcmp<32>, // - generic::Memcmp<64> // + generic::Memcmp, // + generic::Memcmp, // + generic::Memcmp, // + generic::MemcmpSequence, // + generic::MemcmpSequence, // + generic::MemcmpSequence, // + generic::MemcmpSequence // >; TYPED_TEST(LlvmLibcOpTest, Memcmp, MemcmpImplementations) { @@ -319,7 +316,8 @@ ASSERT_TRUE((CheckMemcmp(span1, span2, kSize))); } } - { // Test head tail operations from kSize to 2 * kSize. + if constexpr (has_head_tail::value) { + // Test head tail operations from kSize to 2 * kSize. static constexpr auto HeadTailImpl = CmpAdaptor; Buffer Buffer1(2 * kSize); Buffer Buffer2(2 * kSize); @@ -330,7 +328,8 @@ ASSERT_TRUE((CheckMemcmp(span1, span2, size))); } } - { // Test loop operations from kSize to 3 * kSize. + if constexpr (has_loop_and_tail::value) { + // Test loop operations from kSize to 3 * kSize. if constexpr (kSize > 1) { static constexpr auto LoopImpl = CmpAdaptor; Buffer Buffer1(3 * kSize);