diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_transpose_coo.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_transpose_coo.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_transpose_coo.mlir @@ -0,0 +1,97 @@ +// DEFINE: %{option} = enable-runtime-library=true +// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option} +// DEFINE: %{run} = mlir-cpu-runner \ +// DEFINE: -e entry -entry-point-result=void \ +// DEFINE: -shared-libs=%mlir_c_runner_utils | \ +// DEFINE: FileCheck %s +// +// FIXME: lib path does not support all of COO yet +// R_U_N: %{compile} | %{run} +// +// Do the same run, but now with direct IR generation. +// REDEFINE: %{option} = enable-runtime-library=false +// RUN: %{compile} | %{run} +// +// Do the same run, but now with direct IR generation and vectorization. +// REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" +// RUN: %{compile} | %{run} +// +// Do the same run, but now with direct IR generation and, if available, VLA +// vectorization. +// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA" +// REDEFINE: %{run} = %lli \ +// REDEFINE: --entry-function=entry_lli \ +// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \ +// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \ +// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \ +// REDEFINE: FileCheck %s +// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run} + +#SortedCOO = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed-nu", "singleton" ] +}> + +module { + + // A linalg representation of some higher "transpose" op. + func.func @transpose_coo(%arga: tensor<10x5xf32, #SortedCOO>) + -> tensor<5x10xf32, #SortedCOO> { + %0 = bufferization.alloc_tensor() : tensor<5x10xf32, #SortedCOO> + %1 = linalg.generic { + indexing_maps = [affine_map<(d0, d1) -> (d1, d0)>, + affine_map<(d0, d1) -> (d0, d1)>], + iterator_types = ["parallel", "parallel"]} + ins(%arga : tensor<10x5xf32, #SortedCOO>) + outs(%0 : tensor<5x10xf32, #SortedCOO>) { + ^bb0(%in: f32, %out: f32): + linalg.yield %in : f32 + } -> tensor<5x10xf32, #SortedCOO> + return %1 : tensor<5x10xf32, #SortedCOO> + } + + func.func @entry() { + %f0 = arith.constant 0.0 : f32 + %c0 = arith.constant 0 : index + %c1 = arith.constant 1 : index + + %A = arith.constant dense< + [ [ 10.0, 20.0, 30.0, 40.0, 50.0 ], + [ 11.0, 21.0, 31.0, 41.0, 51.0 ], + [ 12.0, 22.0, 32.0, 42.0, 52.0 ], + [ 13.0, 23.0, 33.0, 43.0, 53.0 ], + [ 14.0, 24.0, 34.0, 44.0, 54.0 ], + [ 15.0, 25.0, 35.0, 45.0, 55.0 ], + [ 16.0, 26.0, 36.0, 46.0, 56.0 ], + [ 17.0, 27.0, 37.0, 47.0, 57.0 ], + [ 18.0, 28.0, 38.0, 48.0, 58.0 ], + [ 19.0, 29.0, 39.0, 49.0, 59.0 ] ] + > : tensor<10x5xf32> + + // Stress test with a "sparse" version of A. + %SA = sparse_tensor.convert %A + : tensor<10x5xf32> to tensor<10x5xf32, #SortedCOO> + %SAT = call @transpose_coo(%SA) : (tensor<10x5xf32, #SortedCOO>) + -> tensor<5x10xf32, #SortedCOO> + + // + // Verify original and transposed sorted COO. + // + // CHECK: ( 10, 20, 30, 40, 50, 11, 21, 31, 41, 51, 12, 22, 32, 42, 52, 13, 23, 33, 43, 53, 14, 24, 34, 44, 54, 15, 25, 35, 45, 55, 16, 26, 36, 46, 56, 17, 27, 37, 47, 57, 18, 28, 38, 48, 58, 19, 29, 39, 49, 59 ) + // CHECK-NEXT: ( 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 ) + // + %va = sparse_tensor.values %SA + : tensor<10x5xf32, #SortedCOO> to memref + %vat = sparse_tensor.values %SAT + : tensor<5x10xf32, #SortedCOO> to memref + %v1 = vector.transfer_read %va[%c0], %f0 : memref, vector<50xf32> + %v2 = vector.transfer_read %vat[%c0], %f0 : memref, vector<50xf32> + vector.print %v1 : vector<50xf32> + vector.print %v2 : vector<50xf32> + + // Release resources. + bufferization.dealloc_tensor %SA : tensor<10x5xf32, #SortedCOO> + bufferization.dealloc_tensor %SAT : tensor<5x10xf32, #SortedCOO> + + return + } +}