diff --git a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td --- a/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td +++ b/mlir/include/mlir/Dialect/Bufferization/IR/BufferizationOps.td @@ -272,9 +272,8 @@ ]> { let summary = "memref to tensor operation"; let description = [{ - Create a tensor from a `memref`, making an independent copy of the element - data. The result value is a tensor whose shape and element type match the - memref operand. + An operation that creates a tensor from a `memref`. The result value is a + tensor whose shape and element type match the memref operand. The opposite of this op is `to_memref`. Together, these two ops are useful for source/target materializations when doing type conversions @@ -284,15 +283,39 @@ ```mlir // Produces a value of tensor<4x?xf32> type. - %12 = bufferization.to_tensor %10 : memref<4x?xf32, #layout, memspace0> + %t = bufferization.to_tensor %m : memref<4x?xf32, #layout, 0> ``` - If tensor load is used in the bufferization steps, mutating the source - buffer after loading leads to undefined behavior. + If the `writable` unit attribute is set, the produced tensor is considered + "writable" during bufferization. Otherwise, every OpOperand that bufferizes + to a write to the future buffer of the resulting tensor (or an alias + thereof) will bufferize out-of-place to prevent emitting any writes to + `memref` during bufferization. + + If the given memref does not alias with any other memref passed to another + `to_tensor` op, the `restrict` unit attribute can be set. Only such + operations are supported by One-Shot Bufferize. (Otherwise, potential memref + aliasing relationships would have to be captured in One-Shot Bufferize.) + + Example: + + ``` + %t = bufferization.to_tensor %m restrict writable : memref<4xf32> + + // %t is writable, so the tensor.insert may bufferize in-place in the + // absence of other conflicts. + %r = tensor.insert %f into %t[%idx] : tensor<4xf32> + ``` + + `to_tensor` ops are not bufferized. They are expected to fold away after + bufferization. If there are non-bufferizable ops in the IR and + `allowUnknownOps` is set, they may be part of the resulting IR and not fold + away. However, such IR is no longer bufferizable with One-Shot Bufferize. }]; let arguments = (ins Arg:$memref); + "the reference to load from", [MemRead]>:$memref, + UnitAttr:$restrict, UnitAttr:$writable); let results = (outs AnyTensor:$result); let extraClassDeclaration = [{ @@ -308,30 +331,13 @@ // BufferizableOpInterface implementation //===------------------------------------------------------------------===// - // ToTensorOp conceptually loads a tensor from a memory location. The - // One-Shot analysis has no information about the memref that is loaded from - // by ToTensorOp. We have to assume that the loaded tensor may after - // bufferization potentially alias with any other bufferized tensor. Since - // ToTensorOp and ToMemrefOp have no aliasing OpOperand/OpResult pairs, this - // cannot be encoded directly in the analysis. However, declaring ToTensorOp - // results as not writable enforces a buffer copy and has the same effect. - LogicalResult bufferize(RewriterBase &rewriter, const BufferizationOptions &options) const { - // to_tensor cannot be bufferized. However, other ops that are using - // to_tensor's result will eventually be bufferized. At that point, they - // will start using to_tensor's memref operand. Once all users of - // to_tensor are bufferized, the op will not have any users anymore and - // DCE away. In case of partial bufferization, to_memref(to_tensor(x)) - // constructs may be left over. These are folded by the canonicalizer or - // FinalizingBufferize. + // to_tensor/to_memref pairs fold away after bufferization. return success(); } - bool isWritable(Value value, const AnalysisState &state) const { - // It is unknown whether the memref operand is writable or not. - return false; - } + bool isWritable(Value value, const AnalysisState &state); FailureOr getBufferType( Value value, const BufferizationOptions &options, @@ -340,7 +346,10 @@ } }]; - let assemblyFormat = "$memref attr-dict `:` type($memref)"; + let assemblyFormat = [{ + $memref (`restrict` $restrict^)? (`writable` $writable^)? attr-dict + `:` type($memref) + }]; let hasCanonicalizer = 1; let hasFolder = 1; @@ -362,19 +371,19 @@ ]> { let summary = "tensor to memref cast operation"; let description = [{ - Casts a tensor to a memref. + An operation that returns the future buffer of a `tensor`. ```mlir - // Result type is memref<4x?xf32, #layout, 42> - %12 = bufferization.to_memref %10 : memref<4x?xf32, #layout, 42> + // Result type is memref<4x?xf32, #layout, 0> + %m = bufferization.to_memref %t : memref<4x?xf32, #layout, 0> ``` - Note, that mutating the result of the `to_memref` operation leads to - undefined behavior. - This operation is a specialized variant of the built-in - `unrealized_conversion_cast` and is intended for use in the context of - gradual bufferization. + `unrealized_conversion_cast` and is used to make sure that the IR stays + valid at any point during the bufferization. + + IR that contains `to_memref` ops cannot be bufferized with One-Shot + Bufferize. }]; let arguments = (ins AnyTensor:$tensor); diff --git a/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp --- a/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp +++ b/mlir/lib/Dialect/Bufferization/IR/BufferizationOps.cpp @@ -561,6 +561,10 @@ // ToTensorOp //===----------------------------------------------------------------------===// +bool ToTensorOp::isWritable(Value value, const AnalysisState &state) { + return getWritable(); +} + OpFoldResult ToTensorOp::fold(FoldAdaptor) { if (auto toMemref = getMemref().getDefiningOp()) // Approximate alias analysis by conservatively folding only when no there diff --git a/mlir/lib/Dialect/Bufferization/Transforms/OneShotAnalysis.cpp b/mlir/lib/Dialect/Bufferization/Transforms/OneShotAnalysis.cpp --- a/mlir/lib/Dialect/Bufferization/Transforms/OneShotAnalysis.cpp +++ b/mlir/lib/Dialect/Bufferization/Transforms/OneShotAnalysis.cpp @@ -942,10 +942,21 @@ // Input IR may not contain any ToMemrefOps. These are not supported because // the analysis cannot follow the data flow through memrefs. if (isa(op.getOperation())) { - op->emitError("to_memref ops not supported during One-Shot Analysis"); + op->emitError("to_memref ops are not supported by One-Shot Analysis"); return WalkResult::interrupt(); } + // Input IR may not contain any ToTensorOps without the "restrict" + // attribute. Such tensors may alias any other tensor, which is currently + // not handled in the analysis. + if (auto toTensorOp = dyn_cast(op.getOperation())) { + if (!toTensorOp.getRestrict()) { + op->emitError("to_tensor ops without `restrict` are not supported by " + "One-Shot Analysis"); + return WalkResult::interrupt(); + } + } + for (OpOperand &opOperand : op->getOpOperands()) { if (opOperand.get().getType().isa()) { if (wouldCreateReadAfterWriteInterference( diff --git a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-analysis.mlir b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-analysis.mlir --- a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-analysis.mlir +++ b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-analysis.mlir @@ -1057,9 +1057,9 @@ // CHECK-LABEL: func @to_tensor_op_not_writable func.func @to_tensor_op_not_writable(%m: memref, %v: vector<5xf32>, - %idx1: index, %idx2: index) + %idx1: index, %idx2: index) -> vector<10xf32> { - %0 = bufferization.to_tensor %m : memref + %0 = bufferization.to_tensor %m restrict : memref // Write to the tensor. Cannot be inplace due to tensor_load. // CHECK: vector.transfer_write diff --git a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir --- a/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir +++ b/mlir/test/Dialect/Bufferization/Transforms/one-shot-module-bufferize-invalid.mlir @@ -231,14 +231,11 @@ // ----- -func.func @to_memref_op_is_writing( +func.func @to_memref_op_unsupported( %t1: tensor {bufferization.writable = true}, %idx1: index, %idx2: index, %idx3: index, %v1: vector<5xf32>) -> (vector<5xf32>, vector<5xf32>) { - // This is a RaW conflict because to_memref is an inplace write and %t1 is - // read further down. This will likely have to change with partial - // bufferization. - // expected-error @+1 {{to_memref ops not supported during One-Shot Analysis}} + // expected-error @+1 {{to_memref ops are not supported by One-Shot Analysis}} %0 = bufferization.to_memref %t1 : memref // Read from both. @@ -251,6 +248,16 @@ // ----- +func.func @to_tensor_op_unsupported(%m: memref, %idx: index) -> (f32) { + // expected-error @+1 {{to_tensor ops without `restrict` are not supported by One-Shot Analysis}} + %0 = bufferization.to_tensor %m : memref + + %1 = tensor.extract %0[%idx] : tensor + return %1 : f32 +} + +// ----- + // expected-error @+2 {{failed to bufferize op}} // expected-error @+1 {{cannot bufferize bodiless function that returns a tensor}} func.func private @foo(%t : tensor) -> (f32, tensor, f32) diff --git a/mlir/test/Dialect/Bufferization/ops.mlir b/mlir/test/Dialect/Bufferization/ops.mlir --- a/mlir/test/Dialect/Bufferization/ops.mlir +++ b/mlir/test/Dialect/Bufferization/ops.mlir @@ -23,7 +23,7 @@ // CHECK-LABEL: func @test_to_tensor func.func @test_to_tensor(%buf : memref<2xf32>) -> tensor<2xf32> { - %tensor = bufferization.to_tensor %buf : memref<2xf32> + %tensor = bufferization.to_tensor %buf restrict writable : memref<2xf32> return %tensor : tensor<2xf32> }