diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td @@ -58,7 +58,7 @@ let hasVerifier = 1; } -def SparseTensor_PackOp : SparseTensor_Op<"pack">, +def SparseTensor_PackOp : SparseTensor_Op<"pack", [Pure]>, Arguments<(ins AnyRankedTensor:$data, AnyRankedTensor:$indices)>, Results<(outs AnySparseTensor: $result)> { @@ -66,9 +66,9 @@ let description = [{ Packs the data/indices into a COO sparse tensor. The coordinates in `indices` - shall not exceed the dimension sizes of the returned sparse tensor. - Note that the returned tensor must be statically - shaped because it is impossible to infer the shape from sparse coordinates. + shall not exceed the dimension sizes of the returned sparse tensor. Note + that the returned tensor must be statically shaped because it is impossible + to infer the shape from sparse coordinates. `$indices`: stored via a 2-D tensor of integer elements with shape [N, ndims], which specifies the indices of the elements in the sparse tensor that contains @@ -77,19 +77,19 @@ `$data`: stored via a 1-D tensor with shape [N], that supplies the corresponding values for the indices. - The operation can be used to materialize a sparse tensor from external sources. E.g., - when passing from Python as two numpy arrays for data and indices. + The operation can be used to materialize a sparse tensor from external sources. + E.g., when passing from Python as two numpy arrays for data and indices. Example: ```mlir - %data = arith.constant dense<[ 1 , 5 ]> : tensor<3xf64> - %indices = arith.constant dense<[[0, 0],[1, 2]]> : tensor<3x2xindex> - - %st = sparse_tensor.pack %data, %indices : tensor<6xf64>, tensor<6x2xi32 - to tensor<100x100xf64, #COO> - // %st = [[1, 0, 0, 0], - // [0, 0, 5, 0], - // [0, 0, 0, 0]] + %data = arith.constant dense<[ 1.1, 2.2, 3.3 ]> : tensor<3xf64> + %indices = arith.constant dense<[[0,0], [1,2], [1,3]]> : tensor<3x2xindex> + + %st = sparse_tensor.pack %data, %indices : tensor<3xf64>, tensor<3x2xindex + to tensor<3x4xf64, #COO> + // yields COO format |1.1, 0.0, 0.0, 0.0| + // of 3x4 matrix |0.0, 0.0, 2.2, 3.3| + // |0.0, 0.0, 0.0, 0.0| ``` }];