diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/concatenate.mlir @@ -2,13 +2,13 @@ // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} // // Do the same run, but now with direct IR generation. -// REDEFINE: %{option} = enable-runtime-library=false +// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true" // RUN: %{command} #MAT_C_C = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}> @@ -35,6 +35,9 @@ }> module { + func.func private @printMemrefF64(%ptr : tensor<*xf64>) + func.func private @printMemref1dF64(%ptr : memref) attributes { llvm.emit_c_interface } + // // Tests without permutation. // @@ -180,125 +183,95 @@ } func.func @dump_mat_9x4(%A: tensor<9x4xf64, #MAT_C_C>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %c = sparse_tensor.convert %A : tensor<9x4xf64, #MAT_C_C> to tensor<9x4xf64> - %v = vector.transfer_read %c[%c0, %c0], %du: tensor<9x4xf64>, vector<9x4xf64> - vector.print %v : vector<9x4xf64> + %cu = tensor.cast %c : tensor<9x4xf64> to tensor<*xf64> + call @printMemrefF64(%cu) : (tensor<*xf64>) -> () %n = sparse_tensor.number_of_entries %A : tensor<9x4xf64, #MAT_C_C> vector.print %n : index %1 = sparse_tensor.values %A : tensor<9x4xf64, #MAT_C_C> to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<18xf64> - vector.print %2 : vector<18xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_perm_9x4(%A: tensor<9x4xf64, #MAT_C_C_P>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %c = sparse_tensor.convert %A : tensor<9x4xf64, #MAT_C_C_P> to tensor<9x4xf64> - %v = vector.transfer_read %c[%c0, %c0], %du: tensor<9x4xf64>, vector<9x4xf64> - vector.print %v : vector<9x4xf64> + %cu = tensor.cast %c : tensor<9x4xf64> to tensor<*xf64> + call @printMemrefF64(%cu) : (tensor<*xf64>) -> () %n = sparse_tensor.number_of_entries %A : tensor<9x4xf64, #MAT_C_C_P> vector.print %n : index %1 = sparse_tensor.values %A : tensor<9x4xf64, #MAT_C_C_P> to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<18xf64> - vector.print %2 : vector<18xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_dense_9x4(%A: tensor<9x4xf64>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - - %v = vector.transfer_read %A[%c0, %c0], %du: tensor<9x4xf64>, vector<9x4xf64> - vector.print %v : vector<9x4xf64> + %u = tensor.cast %A : tensor<9x4xf64> to tensor<*xf64> + call @printMemrefF64(%u) : (tensor<*xf64>) -> () return } func.func @dump_mat_annotated_dense_9x4(%A: tensor<9x4xf64, #MAT_D_D>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %n = sparse_tensor.number_of_entries %A : tensor<9x4xf64, #MAT_D_D> vector.print %n : index %1 = sparse_tensor.values %A : tensor<9x4xf64, #MAT_D_D> to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<36xf64> - vector.print %2 : vector<36xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_4x9(%A: tensor<4x9xf64, #MAT_C_C>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %c = sparse_tensor.convert %A : tensor<4x9xf64, #MAT_C_C> to tensor<4x9xf64> - %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x9xf64>, vector<4x9xf64> - vector.print %v : vector<4x9xf64> + %cu = tensor.cast %c : tensor<4x9xf64> to tensor<*xf64> + call @printMemrefF64(%cu) : (tensor<*xf64>) -> () %n = sparse_tensor.number_of_entries %A : tensor<4x9xf64, #MAT_C_C> vector.print %n : index %1 = sparse_tensor.values %A : tensor<4x9xf64, #MAT_C_C> to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<18xf64> - vector.print %2 : vector<18xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_dyn(%A: tensor) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %c = sparse_tensor.convert %A : tensor to tensor - %v = vector.transfer_read %c[%c0, %c0], %du: tensor, vector<4x9xf64> - vector.print %v : vector<4x9xf64> + %cu = tensor.cast %c : tensor to tensor<*xf64> + call @printMemrefF64(%cu) : (tensor<*xf64>) -> () %n = sparse_tensor.number_of_entries %A : tensor vector.print %n : index %1 = sparse_tensor.values %A : tensor to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<18xf64> - vector.print %2 : vector<18xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_perm_4x9(%A: tensor<4x9xf64, #MAT_C_C_P>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - %c = sparse_tensor.convert %A : tensor<4x9xf64, #MAT_C_C_P> to tensor<4x9xf64> - %v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x9xf64>, vector<4x9xf64> - vector.print %v : vector<4x9xf64> + %cu = tensor.cast %c : tensor<4x9xf64> to tensor<*xf64> + call @printMemrefF64(%cu) : (tensor<*xf64>) -> () %n = sparse_tensor.number_of_entries %A : tensor<4x9xf64, #MAT_C_C_P> vector.print %n : index %1 = sparse_tensor.values %A : tensor<4x9xf64, #MAT_C_C_P> to memref - %2 = vector.transfer_read %1[%c0], %du: memref, vector<18xf64> - vector.print %2 : vector<18xf64> + call @printMemref1dF64(%1) : (memref) -> () return } func.func @dump_mat_dense_4x9(%A: tensor<4x9xf64>) { - %c0 = arith.constant 0 : index - %du = arith.constant -1.0 : f64 - - %v = vector.transfer_read %A[%c0, %c0], %du: tensor<4x9xf64>, vector<4x9xf64> - vector.print %v : vector<4x9xf64> + %1 = tensor.cast %A : tensor<4x9xf64> to tensor<*xf64> + call @printMemrefF64(%1) : (tensor<*xf64>) -> () return } @@ -343,111 +316,202 @@ %sm43cd_dyn = sparse_tensor.convert %m43 : tensor<4x3xf64> to tensor %sm44dc_dyn = sparse_tensor.convert %m44 : tensor<4x4xf64> to tensor - // CHECK: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 ) + // CHECK: [1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 %0 = call @concat_sparse_sparse(%sm24cc, %sm34cd, %sm44dc) : (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> call @dump_mat_9x4(%0) : (tensor<9x4xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] %1 = call @concat_sparse_dense(%sm24cc, %sm34cd, %sm44dc) : (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> call @dump_mat_dense_9x4(%1) : (tensor<9x4xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 ) + // CHECK: [1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 %2 = call @concat_mix_sparse(%m24, %sm34cd, %sm44dc) : (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> call @dump_mat_9x4(%2) : (tensor<9x4xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] %3 = call @concat_mix_dense(%m24, %sm34cd, %sm44dc) : (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> call @dump_mat_dense_9x4(%3) : (tensor<9x4xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 1, 1, 1, 1, 2, 0.5, 5, 3.5, 5, 0.5, 3, 1, 2, 1.5, 2, 1, 1 ) + // CHECK: [1, 1, 1, 1, 1, 2, 0.5, 5, 3.5, 5, 0.5, 3, 1, 2, 1.5, 2, 1, 1 %4 = call @concat_sparse_sparse_perm(%sm24ccp, %sm34cd, %sm44dc) : (tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C_P> call @dump_mat_perm_9x4(%4) : (tensor<9x4xf64, #MAT_C_C_P>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] %5 = call @concat_sparse_dense_perm(%sm24ccp, %sm34cdp, %sm44dc) : (tensor<2x4xf64, #MAT_C_C_P>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64> call @dump_mat_dense_9x4(%5) : (tensor<9x4xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 ) + // CHECK: [1, 3, 2, 1, 1, 1, 0.5, 1, 5, 2, 1.5, 1, 3.5, 1, 5, 2, 1, 0.5 %6 = call @concat_mix_sparse_perm(%m24, %sm34cdp, %sm44dc) : (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_C_C> call @dump_mat_9x4(%6) : (tensor<9x4xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 3, 0 ), ( 0, 2, 0, 0 ), ( 1, 0, 1, 1 ), ( 0, 0.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 0, 0, 1.5, 1 ), ( 0, 3.5, 0, 0 ), ( 1, 5, 2, 0 ), ( 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0], + // CHECK-NEXT: [1, 0, 1, 1], + // CHECK-NEXT: [0, 0.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 1.5, 1], + // CHECK-NEXT: [0, 3.5, 0, 0], + // CHECK-NEXT: [1, 5, 2, 0], + // CHECK-NEXT: [1, 0.5, 0, 0]] %7 = call @concat_mix_dense_perm(%m24, %sm34cd, %sm44dcp) : (tensor<2x4xf64>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C_P>) -> tensor<9x4xf64> call @dump_mat_dense_9x4(%7) : (tensor<9x4xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 ) + // CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 %8 = call @concat_sparse_sparse_dim1(%sm42cc, %sm43cd, %sm44dc) : (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> call @dump_mat_4x9(%8) : (tensor<4x9xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] %9 = call @concat_sparse_dense_dim1(%sm42cc, %sm43cd, %sm44dc) : (tensor<4x2xf64, #MAT_C_C>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> call @dump_mat_dense_4x9(%9) : (tensor<4x9xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 ) + // CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 %10 = call @concat_mix_sparse_dim1(%m42, %sm43cd, %sm44dc) : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> call @dump_mat_4x9(%10) : (tensor<4x9xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] %11 = call @concat_mix_dense_dim1(%m42, %sm43cd, %sm44dc) : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> call @dump_mat_dense_4x9(%11) : (tensor<4x9xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 3.1, 2, 1, 1, 5, 2, 1, 0.5, 1, 1, 1, 3.5, 5, 0.5, 1.5, 2, 1 ) + // CHECK: [1, 3.1, 2, 1, 1, 5, 2, 1, 0.5, 1, 1, 1, 3.5, 5, 0.5, 1.5, 2, 1 %12 = call @concat_sparse_sparse_perm_dim1(%sm42ccp, %sm43cd, %sm44dc) : (tensor<4x2xf64, #MAT_C_C_P>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C_P> call @dump_mat_perm_4x9(%12) : (tensor<4x9xf64, #MAT_C_C_P>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] %13 = call @concat_sparse_dense_perm_dim1(%sm42ccp, %sm43cdp, %sm44dc) : (tensor<4x2xf64, #MAT_C_C_P>, tensor<4x3xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64> call @dump_mat_dense_4x9(%13) : (tensor<4x9xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 ) + // CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 %14 = call @concat_mix_sparse_perm_dim1(%m42, %sm43cdp, %sm44dc) : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D_P>, tensor<4x4xf64, #MAT_D_C>) -> tensor<4x9xf64, #MAT_C_C> call @dump_mat_4x9(%14) : (tensor<4x9xf64, #MAT_C_C>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] %15 = call @concat_mix_dense_perm_dim1(%m42, %sm43cd, %sm44dcp) : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C_P>) -> tensor<4x9xf64> call @dump_mat_dense_4x9(%15) : (tensor<4x9xf64>) -> () - // CHECK-NEXT: ( ( 1, 0, 1, 0, 1, 0, 0, 1.5, 1 ), ( 3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0 ), ( 0, 2, 0, 0, 1, 1, 5, 2, 0 ), ( 0, 0, 5, 2, 0, 1, 0.5, 0, 0 ) ) + // CHECK: {{\[}}[1, 0, 1, 0, 1, 0, 0, 1.5, 1], + // CHECK-NEXT: [3.1, 0, 1, 0, 0.5, 0, 3.5, 0, 0], + // CHECK-NEXT: [0, 2, 0, 0, 1, 1, 5, 2, 0], + // CHECK-NEXT: [0, 0, 5, 2, 0, 1, 0.5, 0, 0]] // CHECK-NEXT: 18 - // CHECK-NEXT: ( 1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 ) + // CHECK: [1, 1, 1, 1.5, 1, 3.1, 1, 0.5, 3.5, 2, 1, 1, 5, 2, 5, 2, 1, 0.5 %16 = call @concat_mix_sparse_dyn(%m42, %sm43cd, %sm44dc) : (tensor<4x2xf64>, tensor<4x3xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor call @dump_mat_dyn(%16) : (tensor) -> () // CHECK-NEXT: 36 - // CHECK-NEXT: ( 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0.5, 5, 0, 3.5, 5, 0.5, 3, 0, 1, 0, 2, 1.5, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 ) + // CHECK: [1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0.5, 5, 0, 3.5, 5, 0.5, 3, 0, 1, 0, 2, 1.5, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0 %17 = call @concat_sparse_annotated_dense(%sm24cc, %sm34cd, %sm44dc) : (tensor<2x4xf64, #MAT_C_C>, tensor<3x4xf64, #MAT_C_D>, tensor<4x4xf64, #MAT_D_C>) -> tensor<9x4xf64, #MAT_D_D> call @dump_mat_annotated_dense_9x4(%17) : (tensor<9x4xf64, #MAT_D_D>) -> () diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/dense_output.mlir @@ -3,7 +3,7 @@ // DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/test.mtx" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -66,6 +66,7 @@ } func.func private @getTensorFilename(index) -> (!Filename) + func.func private @printMemref1dF64(%ptr : memref) attributes { llvm.emit_c_interface } // // Main driver that reads matrix from file and calls the kernel. @@ -86,13 +87,14 @@ // // Print the linearized 5x5 result for verification. + // CHECK: 25 + // CHECK: [2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10 // - // CHECK: ( 2, 0, 0, 2.8, 0, 0, 4, 0, 0, 5, 0, 0, 6, 0, 0, 8.2, 0, 0, 8, 0, 0, 10.4, 0, 0, 10 ) - // + %n = sparse_tensor.number_of_entries %0 : tensor + vector.print %n : index %m = sparse_tensor.values %0 : tensor to memref - %v = vector.load %m[%c0] : memref, vector<25xf64> - vector.print %v : vector<25xf64> + call @printMemref1dF64(%m) : (memref) -> () // Release the resources. bufferization.dealloc_tensor %a : tensor diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_dyn.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_dyn.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_dyn.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_dyn.mlir @@ -2,7 +2,7 @@ // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -27,15 +27,14 @@ // module { + func.func private @printMemref1dF64(%ptr : memref) attributes { llvm.emit_c_interface } + // // Helper method to print values array. The transfer actually // reads more than required to verify size of buffer as well. // func.func @dump(%arg0: memref) { - %c = arith.constant 0 : index - %d = arith.constant 0.0 : f64 - %0 = vector.transfer_read %arg0[%c], %d: memref, vector<8xf64> - vector.print %0 : vector<8xf64> + call @printMemref1dF64(%arg0) : (memref) -> () return } @@ -55,15 +54,32 @@ %5 = sparse_tensor.convert %3 : tensor to tensor %6 = sparse_tensor.convert %4 : tensor to tensor +// + // Check number_of_entries. + // + // CHECK-COUNT-6: 7 + %n1 = sparse_tensor.number_of_entries %1 : tensor + %n2 = sparse_tensor.number_of_entries %2 : tensor + %n3 = sparse_tensor.number_of_entries %3 : tensor + %n4 = sparse_tensor.number_of_entries %4 : tensor + %n5 = sparse_tensor.number_of_entries %5 : tensor + %n6 = sparse_tensor.number_of_entries %6 : tensor + vector.print %n1 : index + vector.print %n2 : index + vector.print %n3 : index + vector.print %n4 : index + vector.print %n5 : index + vector.print %n6 : index + // // All proper row-/column-wise? // - // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 0 ) - // CHECK: ( 1, 4, 6, 2, 5, 3, 7, 0 ) - // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 0 ) - // CHECK: ( 1, 4, 6, 2, 5, 3, 7, 0 ) - // CHECK: ( 1, 4, 6, 2, 5, 3, 7, 0 ) - // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 0 ) + // CHECK: [1, 2, 3, 4, 5, 6, 7 + // CHECK: [1, 4, 6, 2, 5, 3, 7 + // CHECK: [1, 2, 3, 4, 5, 6, 7 + // CHECK: [1, 4, 6, 2, 5, 3, 7 + // CHECK: [1, 4, 6, 2, 5, 3, 7 + // CHECK: [1, 2, 3, 4, 5, 6, 7 // %m1 = sparse_tensor.values %1 : tensor to memref %m2 = sparse_tensor.values %2 : tensor to memref diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_expand.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_expand.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_expand.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_expand.mlir @@ -2,7 +2,7 @@ // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -17,6 +17,8 @@ }> module { + func.func private @printMemrefF64(%ptr : tensor<*xf64>) + // // Column-wise storage forces the ijk loop to permute into jki // so that access pattern expansion (workspace) needs to be @@ -63,19 +65,18 @@ : (tensor<8x2xf64, #CSC>, tensor<2x4xf64, #CSC>) -> tensor<8x4xf64, #CSC> - // - // CHECK: ( ( 32.53, 35.73, 38.93, 42.13 ), - // CHECK-SAME: ( 34.56, 37.96, 41.36, 44.76 ), - // CHECK-SAME: ( 36.59, 40.19, 43.79, 47.39 ), - // CHECK-SAME: ( 38.62, 42.42, 46.22, 50.02 ), - // CHECK-SAME: ( 40.65, 44.65, 48.65, 52.65 ), - // CHECK-SAME: ( 42.68, 46.88, 51.08, 55.28 ), - // CHECK-SAME: ( 44.71, 49.11, 53.51, 57.91 ), - // CHECK-SAME: ( 46.74, 51.34, 55.94, 60.54 ) ) + // CHECK: {{\[}}[32.53, 35.73, 38.93, 42.13], + // CHECK-NEXT: [34.56, 37.96, 41.36, 44.76], + // CHECK-NEXT: [36.59, 40.19, 43.79, 47.39], + // CHECK-NEXT: [38.62, 42.42, 46.22, 50.02], + // CHECK-NEXT: [40.65, 44.65, 48.65, 52.65], + // CHECK-NEXT: [42.68, 46.88, 51.08, 55.28], + // CHECK-NEXT: [44.71, 49.11, 53.51, 57.91], + // CHECK-NEXT: [46.74, 51.34, 55.94, 60.54]] // %xc = sparse_tensor.convert %x3 : tensor<8x4xf64, #CSC> to tensor<8x4xf64> - %xv = vector.transfer_read %xc[%c0, %c0], %d1 : tensor<8x4xf64>, vector<8x4xf64> - vector.print %xv : vector<8x4xf64> + %xu = tensor.cast %xc : tensor<8x4xf64> to tensor<*xf64> + call @printMemrefF64(%xu) : (tensor<*xf64>) -> () // Release the resources. bufferization.dealloc_tensor %x1 : tensor<8x2xf64, #CSC> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_flatten.mlir @@ -3,7 +3,7 @@ // DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/test.tns" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -56,6 +56,7 @@ } func.func private @getTensorFilename(index) -> (!Filename) + func.func private @printMemrefF64(%ptr : tensor<*xf64>) // // Main driver that reads tensor from file and calls the sparse kernel. @@ -80,18 +81,16 @@ // Print the result for verification. // - // CHECK: ( 6.25, 0, 0 ) - // CHECK: ( 4.224, 6.21, 0 ) - // CHECK: ( 0, 0, 15.455 ) - // CHECK: ( 0, 0, 0 ) - // CHECK: ( 0, 0, 0 ) - // CHECK: ( 0, 0, 0 ) - // CHECK: ( 7, 0, 0 ) + // CHECK: {{\[}}[6.25, 0, 0], + // CHECK-NEXT: [4.224, 6.21, 0], + // CHECK-NEXT: [0, 0, 15.455], + // CHECK-NEXT: [0, 0, 0], + // CHECK-NEXT: [0, 0, 0], + // CHECK-NEXT: [0, 0, 0], + // CHECK-NEXT: [7, 0, 0]] // - scf.for %i = %c0 to %c7 step %c1 { - %v = vector.transfer_read %0[%i, %c0], %d0: tensor<7x3xf64>, vector<3xf64> - vector.print %v : vector<3xf64> - } + %1 = tensor.cast %0 : tensor<7x3xf64> to tensor<*xf64> + call @printMemrefF64(%1) : (tensor<*xf64>) -> () // Release the resources. bufferization.dealloc_tensor %a : tensor<7x3x3x3x3x3x5x3xf64, #SparseTensor> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matmul.mlir @@ -2,13 +2,13 @@ // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} // // Do the same run, but now with direct IR generation. -// REDEFINE: %{option} = enable-runtime-library=false +// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true" // RUN: %{command} // // Do the same run, but now with parallelization strategy. @@ -16,7 +16,7 @@ // RUN: %{command} // // Do the same run, but now with direct IR generation and parallelization strategy. -// REDEFINE: %{option} = "enable-runtime-library=false parallelization-strategy=any-storage-any-loop" +// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true parallelization-strategy=any-storage-any-loop" // RUN: %{command} #CSR = #sparse_tensor.encoding<{ @@ -30,6 +30,9 @@ }> module { + func.func private @printMemrefF64(%ptr : tensor<*xf64>) + func.func private @printMemref1dF64(%ptr : memref) attributes { llvm.emit_c_interface } + // // Computes C = A x B with all matrices dense. // @@ -70,7 +73,6 @@ // func.func @entry() { %c0 = arith.constant 0 : index - %d1 = arith.constant -1.0 : f64 // Initialize various matrices, dense for stress testing, // and sparse to verify correct nonzero structure. @@ -178,95 +180,102 @@ tensor<8x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> // - // CHECK: ( ( 388.76, 425.56, 462.36, 499.16 ), - // CHECK-SAME: ( 397.12, 434.72, 472.32, 509.92 ), - // CHECK-SAME: ( 405.48, 443.88, 482.28, 520.68 ), - // CHECK-SAME: ( 413.84, 453.04, 492.24, 531.44 ) ) + // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16], + // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92], + // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68], + // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]] // - %v0 = vector.transfer_read %0[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v0 : vector<4x4xf64> + %u0 = tensor.cast %0 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%u0) : (tensor<*xf64>) -> () // - // CHECK: ( ( 388.76, 425.56, 462.36, 499.16 ), - // CHECK-SAME: ( 397.12, 434.72, 472.32, 509.92 ), - // CHECK-SAME: ( 405.48, 443.88, 482.28, 520.68 ), - // CHECK-SAME: ( 413.84, 453.04, 492.24, 531.44 ) ) + // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16], + // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92], + // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68], + // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]] // %c1 = sparse_tensor.convert %1 : tensor<4x4xf64, #CSR> to tensor<4x4xf64> - %v1 = vector.transfer_read %c1[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v1 : vector<4x4xf64> + %c1u = tensor.cast %c1 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c1u) : (tensor<*xf64>) -> () // - // CHECK: ( ( 388.76, 425.56, 462.36, 499.16 ), - // CHECK-SAME: ( 397.12, 434.72, 472.32, 509.92 ), - // CHECK-SAME: ( 405.48, 443.88, 482.28, 520.68 ), - // CHECK-SAME: ( 413.84, 453.04, 492.24, 531.44 ) ) + // CHECK: {{\[}}[388.76, 425.56, 462.36, 499.16], + // CHECK-NEXT: [397.12, 434.72, 472.32, 509.92], + // CHECK-NEXT: [405.48, 443.88, 482.28, 520.68], + // CHECK-NEXT: [413.84, 453.04, 492.24, 531.44]] // %c2 = sparse_tensor.convert %2 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64> - %v2 = vector.transfer_read %c2[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v2 : vector<4x4xf64> + %c2u = tensor.cast %c2 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c2u) : (tensor<*xf64>) -> () // - // CHECK: ( ( 86.08, 94.28, 102.48, 110.68 ), - // CHECK-SAME: ( 0, 0, 0, 0 ), - // CHECK-SAME: ( 23.46, 25.76, 28.06, 30.36 ), - // CHECK-SAME: ( 10.8, 11.8, 12.8, 13.8 ) ) + // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36], + // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]] // - %v3 = vector.transfer_read %3[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v3 : vector<4x4xf64> + %u3 = tensor.cast %3 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%u3) : (tensor<*xf64>) -> () // - // CHECK: ( ( 86.08, 94.28, 102.48, 110.68 ), - // CHECK-SAME: ( 0, 0, 0, 0 ), - // CHECK-SAME: ( 23.46, 25.76, 28.06, 30.36 ), - // CHECK-SAME: ( 10.8, 11.8, 12.8, 13.8 ) ) + // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36], + // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]] // %c4 = sparse_tensor.convert %4 : tensor<4x4xf64, #CSR> to tensor<4x4xf64> - %v4 = vector.transfer_read %c4[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v4 : vector<4x4xf64> + %c4u = tensor.cast %c4 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c4u) : (tensor<*xf64>) -> () // - // CHECK: ( ( 86.08, 94.28, 102.48, 110.68 ), - // CHECK-SAME: ( 0, 0, 0, 0 ), - // CHECK-SAME: ( 23.46, 25.76, 28.06, 30.36 ), - // CHECK-SAME: ( 10.8, 11.8, 12.8, 13.8 ) ) + // CHECK: {{\[}}[86.08, 94.28, 102.48, 110.68], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [23.46, 25.76, 28.06, 30.36], + // CHECK-NEXT: [10.8, 11.8, 12.8, 13.8]] // %c5 = sparse_tensor.convert %5 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64> - %v5 = vector.transfer_read %c5[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v5 : vector<4x4xf64> + %c5u = tensor.cast %c5 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c5u) : (tensor<*xf64>) -> () // - // CHECK-NEXT: ( ( 0, 30.5, 4.2, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 4.6, 0 ), ( 0, 0, 7, 8 ) ) + // CHECK: {{\[}}[0, 30.5, 4.2, 0], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 4.6, 0], + // CHECK-NEXT: [0, 0, 7, 8]] // - %v6 = vector.transfer_read %6[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v6 : vector<4x4xf64> + %u6 = tensor.cast %6 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%u6) : (tensor<*xf64>) -> () // - // CHECK-NEXT: ( ( 0, 30.5, 4.2, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 4.6, 0 ), ( 0, 0, 7, 8 ) ) + // CHECK: {{\[}}[0, 30.5, 4.2, 0], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 4.6, 0], + // CHECK-NEXT: [0, 0, 7, 8]] // %c7 = sparse_tensor.convert %7 : tensor<4x4xf64, #CSR> to tensor<4x4xf64> - %v7 = vector.transfer_read %c7[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v7 : vector<4x4xf64> + %c7u = tensor.cast %c7 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c7u) : (tensor<*xf64>) -> () // - // CHECK-NEXT: ( ( 0, 30.5, 4.2, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 4.6, 0 ), ( 0, 0, 7, 8 ) ) + // CHECK: {{\[}}[0, 30.5, 4.2, 0], + // CHECK-NEXT: [0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 4.6, 0], + // CHECK-NEXT: [0, 0, 7, 8]] // %c8 = sparse_tensor.convert %8 : tensor<4x4xf64, #DCSR> to tensor<4x4xf64> - %v8 = vector.transfer_read %c8[%c0, %c0], %d1 : tensor<4x4xf64>, vector<4x4xf64> - vector.print %v8 : vector<4x4xf64> + %c8u = tensor.cast %c8 : tensor<4x4xf64> to tensor<*xf64> + call @printMemrefF64(%c8u) : (tensor<*xf64>) -> () // // Sanity check on nonzeros. // - // CHECK-NEXT: ( 30.5, 4.2, 4.6, 7, 8 ) - // CHECK-NEXT: ( 30.5, 4.2, 4.6, 7, 8 ) + // CHECK: [30.5, 4.2, 4.6, 7, 8 + // CHECK: [30.5, 4.2, 4.6, 7, 8 // %val7 = sparse_tensor.values %7 : tensor<4x4xf64, #CSR> to memref %val8 = sparse_tensor.values %8 : tensor<4x4xf64, #DCSR> to memref - %nz7 = vector.transfer_read %val7[%c0], %d1 : memref, vector<5xf64> - %nz8 = vector.transfer_read %val8[%c0], %d1 : memref, vector<5xf64> - vector.print %nz7 : vector<5xf64> - vector.print %nz8 : vector<5xf64> + call @printMemref1dF64(%val7) : (memref) -> () + call @printMemref1dF64(%val8) : (memref) -> () // // Sanity check on stored entries after the computations. diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_matrix_ops.mlir @@ -2,7 +2,7 @@ // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -42,6 +42,8 @@ } module { + func.func private @printMemrefF64(%ptr : tensor<*xf64>) + // Scales a sparse matrix into a new sparse matrix. func.func @matrix_scale(%arga: tensor) -> tensor { %s = arith.constant 2.0 : f64 @@ -110,11 +112,9 @@ // Dump a sparse matrix. func.func @dump(%arg0: tensor) { - %d0 = arith.constant 0.0 : f64 - %c0 = arith.constant 0 : index %dm = sparse_tensor.convert %arg0 : tensor to tensor - %1 = vector.transfer_read %dm[%c0, %c0], %d0: tensor, vector<4x8xf64> - vector.print %1 : vector<4x8xf64> + %u = tensor.cast %dm : tensor to tensor<*xf64> + call @printMemrefF64(%u) : (tensor<*xf64>) -> () return } @@ -150,12 +150,30 @@ // // Verify the results. // - // CHECK: ( ( 1, 2, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 3 ), ( 0, 0, 4, 0, 5, 0, 0, 6 ), ( 7, 0, 8, 9, 0, 0, 0, 0 ) ) - // CHECK-NEXT: ( ( 6, 0, 0, 0, 0, 0, 0, 5 ), ( 4, 0, 0, 0, 0, 0, 3, 0 ), ( 0, 2, 0, 0, 0, 0, 0, 1 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) ) - // CHECK-NEXT: ( ( 2, 4, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 6 ), ( 0, 0, 8, 0, 10, 0, 0, 12 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) ) - // CHECK-NEXT: ( ( 2, 4, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 6 ), ( 0, 0, 8, 0, 10, 0, 0, 12 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) ) - // CHECK-NEXT: ( ( 8, 4, 0, 0, 0, 0, 0, 5 ), ( 4, 0, 0, 0, 0, 0, 3, 6 ), ( 0, 2, 8, 0, 10, 0, 0, 13 ), ( 14, 0, 16, 18, 0, 0, 0, 0 ) ) - // CHECK-NEXT: ( ( 12, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 12 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) ) + // CHECK: {{\[}}[1, 2, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 3], + // CHECK-NEXT: [0, 0, 4, 0, 5, 0, 0, 6], + // CHECK-NEXT: [7, 0, 8, 9, 0, 0, 0, 0]] + // CHECK: {{\[}}[6, 0, 0, 0, 0, 0, 0, 5], + // CHECK-NEXT: [4, 0, 0, 0, 0, 0, 3, 0], + // CHECK-NEXT: [0, 2, 0, 0, 0, 0, 0, 1], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]] + // CHECK: {{\[}}[2, 4, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 6], + // CHECK-NEXT: [0, 0, 8, 0, 10, 0, 0, 12], + // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]] + // CHECK: {{\[}}[2, 4, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 6], + // CHECK-NEXT: [0, 0, 8, 0, 10, 0, 0, 12], + // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]] + // CHECK: {{\[}}[8, 4, 0, 0, 0, 0, 0, 5], + // CHECK-NEXT: [4, 0, 0, 0, 0, 0, 3, 6], + // CHECK-NEXT: [0, 2, 8, 0, 10, 0, 0, 13], + // CHECK-NEXT: [14, 0, 16, 18, 0, 0, 0, 0]] + // CHECK: {{\[}}[12, 0, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 12], + // CHECK-NEXT: [0, 0, 0, 0, 0, 0, 0, 0]] // call @dump(%sm1) : (tensor) -> () call @dump(%sm2) : (tensor) -> () diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_mttkrp.mlir @@ -3,7 +3,7 @@ // DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/mttkrp_b.tns" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ -// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} @@ -35,6 +35,8 @@ // from file, and runs the resulting code with the JIT compiler. // module { + func.func private @printMemrefF64(%ptr : tensor<*xf64>) + // // Computes Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel. See // http://tensor-compiler.org/docs/data_analytics/index.html. @@ -112,12 +114,11 @@ // Print the result for verification. // - // CHECK: ( ( 16075, 21930, 28505, 35800, 43815 ), - // CHECK: ( 10000, 14225, 19180, 24865, 31280 ) ) + // CHECK: {{\[}}[16075, 21930, 28505, 35800, 43815], + // CHECK-NEXT: [10000, 14225, 19180, 24865, 31280]] // - %v = vector.transfer_read %0[%cst0, %cst0], %f0 - : tensor, vector<2x5xf64> - vector.print %v : vector<2x5xf64> + %u = tensor.cast %0: tensor to tensor<*xf64> + call @printMemrefF64(%u) : (tensor<*xf64>) -> () // Release the resources. bufferization.dealloc_tensor %b : tensor diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_rewrite_sort.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_rewrite_sort.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_rewrite_sort.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_rewrite_sort.mlir @@ -1,10 +1,12 @@ // RUN: mlir-opt %s --sparse-compiler=enable-runtime-library=false | \ // RUN: mlir-cpu-runner \ // RUN: -e entry -entry-point-result=void \ -// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ +// RUN: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext,%mlir_lib_dir/libmlir_runner_utils%shlibext | \ // RUN: FileCheck %s module { + func.func private @printMemref1dI32(%ptr : memref) attributes { llvm.emit_c_interface } + // Stores 5 values to the memref buffer. func.func @storeValuesTo(%b: memref, %v0: i32, %v1: i32, %v2: i32, %v3: i32, %v4: i32) -> () { @@ -47,28 +49,24 @@ : (memref, i32, i32, i32, i32, i32) -> () // Sort 0 elements. - // CHECK: ( 10, 2, 0, 5, 1 ) + // CHECK: [10, 2, 0, 5, 1] sparse_tensor.sort %i0, %x0 : memref - %x0v0 = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v0 : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () // Stable sort. - // CHECK: ( 10, 2, 0, 5, 1 ) + // CHECK: [10, 2, 0, 5, 1] sparse_tensor.sort stable %i0, %x0 : memref - %x0v0s = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v0s : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () // Sort the first 4 elements, with the last valid value untouched. - // CHECK: ( 0, 2, 5, 10, 1 ) + // CHECK: [0, 2, 5, 10, 1] sparse_tensor.sort %i4, %x0 : memref - %x0v1 = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v1 : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () // Stable sort. - // CHECK: ( 0, 2, 5, 10, 1 ) + // CHECK: [0, 2, 5, 10, 1] call @storeValuesTo(%x0, %c10, %c2, %c0, %c5, %c1) : (memref, i32, i32, i32, i32, i32) -> () sparse_tensor.sort stable %i4, %x0 : memref - %x0v1s = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v1s : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () // Prepare more buffers of different dimensions. %x1s = memref.alloc() : memref<10xi32> @@ -79,10 +77,10 @@ %y0 = memref.cast %y0s : memref<7xi32> to memref // Sort "parallel arrays". - // CHECK: ( 1, 1, 2, 5, 10 ) - // CHECK: ( 3, 3, 1, 10, 1 ) - // CHECK: ( 9, 9, 4, 7, 2 ) - // CHECK: ( 8, 7, 10, 9, 6 ) + // CHECK: [1, 1, 2, 5, 10] + // CHECK: [3, 3, 1, 10, 1 + // CHECK: [9, 9, 4, 7, 2 + // CHECK: [8, 7, 10, 9, 6 call @storeValuesTo(%x0, %c10, %c2, %c1, %c5, %c1) : (memref, i32, i32, i32, i32, i32) -> () call @storeValuesTo(%x1, %c1, %c1, %c3, %c10, %c3) @@ -93,19 +91,15 @@ : (memref, i32, i32, i32, i32, i32) -> () sparse_tensor.sort %i5, %x0, %x1, %x2 jointly %y0 : memref, memref, memref jointly memref - %x0v2 = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v2 : vector<5xi32> - %x1v = vector.transfer_read %x1[%i0], %c100: memref, vector<5xi32> - vector.print %x1v : vector<5xi32> - %x2v = vector.transfer_read %x2[%i0], %c100: memref, vector<5xi32> - vector.print %x2v : vector<5xi32> - %y0v = vector.transfer_read %y0[%i0], %c100: memref, vector<5xi32> - vector.print %y0v : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () + call @printMemref1dI32(%x1) : (memref) -> () + call @printMemref1dI32(%x2) : (memref) -> () + call @printMemref1dI32(%y0) : (memref) -> () // Stable sort. - // CHECK: ( 1, 1, 2, 5, 10 ) - // CHECK: ( 3, 3, 1, 10, 1 ) - // CHECK: ( 9, 9, 4, 7, 2 ) - // CHECK: ( 8, 7, 10, 9, 6 ) + // CHECK: [1, 1, 2, 5, 10] + // CHECK: [3, 3, 1, 10, 1 + // CHECK: [9, 9, 4, 7, 2 + // CHECK: [8, 7, 10, 9, 6 call @storeValuesTo(%x0, %c10, %c2, %c1, %c5, %c1) : (memref, i32, i32, i32, i32, i32) -> () call @storeValuesTo(%x1, %c1, %c1, %c3, %c10, %c3) @@ -116,14 +110,10 @@ : (memref, i32, i32, i32, i32, i32) -> () sparse_tensor.sort stable %i5, %x0, %x1, %x2 jointly %y0 : memref, memref, memref jointly memref - %x0v2s = vector.transfer_read %x0[%i0], %c100: memref, vector<5xi32> - vector.print %x0v2s : vector<5xi32> - %x1vs = vector.transfer_read %x1[%i0], %c100: memref, vector<5xi32> - vector.print %x1vs : vector<5xi32> - %x2vs = vector.transfer_read %x2[%i0], %c100: memref, vector<5xi32> - vector.print %x2vs : vector<5xi32> - %y0vs = vector.transfer_read %y0[%i0], %c100: memref, vector<5xi32> - vector.print %y0vs : vector<5xi32> + call @printMemref1dI32(%x0) : (memref) -> () + call @printMemref1dI32(%x1) : (memref) -> () + call @printMemref1dI32(%x2) : (memref) -> () + call @printMemref1dI32(%y0) : (memref) -> () // Release the buffers. memref.dealloc %x0 : memref