diff --git a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td --- a/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td +++ b/mlir/include/mlir/Dialect/GPU/IR/GPUOps.td @@ -1157,7 +1157,8 @@ let arguments = (ins Arg>:$src, Arg:$dstMemref, Variadic:$indices, - IndexAttr:$leadDimension); + IndexAttr:$leadDimension, + OptionalAttr:$transpose); let assemblyFormat = [{ $src`,` $dstMemref`[`$indices`]` attr-dict `:` type($src)`,` type($dstMemref) @@ -1165,8 +1166,8 @@ let hasVerifier = 1; } -def GPU_SubgroupMmaComputeOp : GPU_Op<"subgroup_mma_compute", - [Pure, AllTypesMatch<["opC", "res"]>]>{ +def GPU_SubgroupMmaComputeOp + : GPU_Op<"subgroup_mma_compute", [Pure, AllTypesMatch<["opC", "res"]>]> { let summary = "GPU warp synchronous matrix multiply accumulate"; @@ -1175,9 +1176,11 @@ operation using all the threads in a subgroup. This operation takes three `!gpu.mma_matrix`s as arguments: these hold `A`, - `B` and `C`operands for the mma operation. The operation performed is represented + `B` and `C`operands for the mma operation. The operation performed is represented as `C += A * B`. The op returns a `!gpu.mma_matrix` which contains the result of - the operation held by all threads in a subgroup. + the operation held by all threads in a subgroup. `aTranspose` or + `bTranspose` if present, signify that the respective operand was loaded in a + transposed manner. This op is meant to be used along with `gpu.subgroup_mma_store_matrix` and `gpu.subgroup_mma_load_matrix` ops. @@ -1193,9 +1196,11 @@ let arguments = (ins Arg>:$opA, Arg>:$opB, - Arg>:$opC); + Arg>:$opC, + OptionalAttr:$aTranspose, + OptionalAttr:$bTranspose); - let results = (outs GPU_MMAMatrix:$res); + let results = (outs GPU_MMAMatrix : $res); let assemblyFormat = [{ $opA`,` $opB`,` $opC attr-dict `:` type($opA)`,` type($opB) `->` type($res) @@ -1215,11 +1220,12 @@ The `gpu.subgroup_mma_constant_matrix` creates a `!gpu.mma_matrix` with constant elements. - The operation takes a scalar input and return a `!gpu.mma_matrix` where each - element of is equal to the operand constant. The destination mma_matrix type - must have elememt type equal to the constant type. Since the layout of - `!gpu.mma_matrix` is opaque this only support setting all the elements to - the same value. + The operation takes a scalar input and return a `!gpu.mma_matrix` where + each element of is equal to the operand constant. The destination + mma_matrix type must have elememt type equal to the constant type. Since + the layout of `!gpu.mma_matrix` is opaque this only support setting all the + elements to the same value. If the `transpose` attribute is present then + the op does a transposed store. This op is meant to be used along with `gpu.subgroup_mma_compute`. diff --git a/mlir/lib/Conversion/GPUToNVVM/WmmaOpsToNvvm.cpp b/mlir/lib/Conversion/GPUToNVVM/WmmaOpsToNvvm.cpp --- a/mlir/lib/Conversion/GPUToNVVM/WmmaOpsToNvvm.cpp +++ b/mlir/lib/Conversion/GPUToNVVM/WmmaOpsToNvvm.cpp @@ -77,9 +77,9 @@ if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter))) return failure(); - // TODO: Support transposed mma loads. + NVVM::MMALayout layout = NVVM::MMALayout::row; if (subgroupMmaLoadMatrixOp.getTranspose()) - return failure(); + layout = NVVM::MMALayout::col; // Get the shape of the MMAMatrix type being returned. The shape will // choose which intrinsic this op will be lowered to. @@ -105,7 +105,6 @@ n = retTypeShape[1]; k = NVVM::WMMALoadOp::inferKDimension(m, n, eltype); } - NVVM::MMALayout layout = NVVM::MMALayout::row; NVVM::MMAFrag frag = convertOperand(retType.getOperand()); // Check that there is an exisiting instruction for the combination we need. if (NVVM::WMMALoadOp::getIntrinsicID(m, n, k, layout, eltype, frag) == 0) @@ -155,6 +154,8 @@ subgroupMmaStoreMatrixOp.getSrc().getType().cast(); ArrayRef srcTypeShape = srcType.getShape(); NVVM::MMALayout layout = NVVM::MMALayout::row; + if (subgroupMmaStoreMatrixOp.getTranspose()) + layout = NVVM::MMALayout::col; NVVM::MMATypes eltype = getElementType(srcType); int64_t m = srcTypeShape[0]; int64_t n = srcTypeShape[1]; @@ -224,10 +225,15 @@ int64_t m = cTypeShape[0]; int64_t n = cTypeShape[1]; int64_t k = aTypeShape[1]; - NVVM::MMALayout layout = NVVM::MMALayout::row; + NVVM::MMALayout aLayout = NVVM::MMALayout::row; + NVVM::MMALayout bLayout = NVVM::MMALayout::row; + if (subgroupMmaComputeOp.getATranspose()) + aLayout = NVVM::MMALayout::col; + if (subgroupMmaComputeOp.getBTranspose()) + bLayout = NVVM::MMALayout::col; NVVM::MMATypes sourceType = getElementType(aType); NVVM::MMATypes destType = getElementType(cType); - if (NVVM::WMMAMmaOp::getIntrinsicID(m, n, k, layout, layout, sourceType, + if (NVVM::WMMAMmaOp::getIntrinsicID(m, n, k, aLayout, bLayout, sourceType, destType) == 0) return rewriter.notifyMatchFailure(op, kInvalidCaseStr); @@ -236,7 +242,7 @@ unpackOp(adaptor.getOpC()); rewriter.replaceOpWithNewOp( - op, adaptor.getOpC().getType(), m, n, k, layout, layout, sourceType, + op, adaptor.getOpC().getType(), m, n, k, aLayout, bLayout, sourceType, destType, unpackedOps); return success(); } diff --git a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp --- a/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp +++ b/mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp @@ -475,7 +475,7 @@ Value matrix = valueMapping.find(op.getVector())->second; b.create(op.getLoc(), matrix, op.getSource(), op.getIndices(), - b.getIndexAttr(*stride)); + b.getIndexAttr(*stride), UnitAttr()); op.erase(); } @@ -800,8 +800,8 @@ Value opA = valueMapping.find(op.getLhs())->second; Value opB = valueMapping.find(op.getRhs())->second; Value opC = valueMapping.find(op.getAcc())->second; - Value matmul = b.create(op.getLoc(), opC.getType(), - opA, opB, opC); + Value matmul = b.create( + op.getLoc(), opC.getType(), opA, opB, opC, UnitAttr(), UnitAttr()); valueMapping[op.getResult()] = matmul; } diff --git a/mlir/test/Conversion/GPUToNVVM/wmma-ops-to-nvvm.mlir b/mlir/test/Conversion/GPUToNVVM/wmma-ops-to-nvvm.mlir --- a/mlir/test/Conversion/GPUToNVVM/wmma-ops-to-nvvm.mlir +++ b/mlir/test/Conversion/GPUToNVVM/wmma-ops-to-nvvm.mlir @@ -10,7 +10,7 @@ %wg = memref.alloca() {alignment = 32} : memref<32x32xf16, 3> %i = arith.constant 16 : index %j = arith.constant 16 : index - %0 = gpu.subgroup_mma_load_matrix %wg[%i, %j] {leadDimension = 32 : index} : memref<32x32xf16, 3> -> !gpu.mma_matrix<16x16xf16, "AOp"> + %0 = gpu.subgroup_mma_load_matrix %wg[%i, %j] {leadDimension = 32 : index, transpose} : memref<32x32xf16, 3> -> !gpu.mma_matrix<16x16xf16, "AOp"> // CHECK: %[[INX:.*]] = llvm.mlir.constant(16 : index) : i64 // CHECK: %{{.*}} = llvm.insertvalue %{{.*}}, %{{.*}}[{{.*}}, {{.*}}] // CHECK: %[[BASE:.*]] = llvm.extractvalue %{{.*}}[1] : !llvm.struct<(ptr, ptr, i64, array<2 x i64>, array<2 x i64>)> @@ -20,7 +20,7 @@ // CHECK: %[[ADDRESS:.*]] = llvm.getelementptr %[[BASE]][%[[LIJ]]] : (!llvm.ptr, i64) -> !llvm.ptr // CHECK: %[[LDM32:.*]] = llvm.mlir.constant(32 : index) : i32 // CHECK: %[[FRAG:.*]] = nvvm.wmma.load %[[ADDRESS]], %[[LDM32]] - // CHECK-SAME: {eltype = #nvvm.mma_type, frag = #nvvm.mma_frag, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : (!llvm.ptr) -> !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> + // CHECK-SAME: {eltype = #nvvm.mma_type, frag = #nvvm.mma_frag, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : (!llvm.ptr) -> !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: llvm.return %[[FRAG]] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK32: %[[INX:.*]] = llvm.mlir.constant(16 : index) : i32 @@ -32,7 +32,7 @@ // CHECK32: %[[ADDRESS:.*]] = llvm.getelementptr %[[BASE]][%[[LIJ]]] : (!llvm.ptr, i32) -> !llvm.ptr // CHECK32: %[[LDM32:.*]] = llvm.mlir.constant(32 : index) : i32 // CHECK32: %[[FRAG:.*]] = nvvm.wmma.load %[[ADDRESS]], %[[LDM32]] - // CHECK32-SAME: {eltype = #nvvm.mma_type, frag = #nvvm.mma_frag, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : (!llvm.ptr) -> !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> + // CHECK32-SAME: {eltype = #nvvm.mma_type, frag = #nvvm.mma_frag, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : (!llvm.ptr) -> !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK32: llvm.return %[[FRAG]] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> return %0 : !gpu.mma_matrix<16x16xf16, "AOp"> } @@ -50,7 +50,7 @@ %sg = memref.alloca(){alignment = 32} : memref<32x32xf16, 3> %i = arith.constant 16 : index %j = arith.constant 16 : index - gpu.subgroup_mma_store_matrix %arg0, %sg[%i,%j] {leadDimension= 32 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<32x32xf16, 3> + gpu.subgroup_mma_store_matrix %arg0, %sg[%i,%j] {leadDimension= 32 : index, transpose} : !gpu.mma_matrix<16x16xf16, "COp">, memref<32x32xf16, 3> // CHECK: %[[INX:.*]] = llvm.mlir.constant(16 : index) : i64 // CHECK: %{{.*}} = llvm.insertvalue %{{.*}}, %{{.*}}[{{.*}}, {{.*}}] // CHECK: %[[EL1:.*]] = llvm.extractvalue %[[D]][0] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> @@ -64,7 +64,7 @@ // CHECK: %[[ADDRESS:.*]] = llvm.getelementptr %[[BASE]][%[[LIJ]]] : (!llvm.ptr, i64) -> !llvm.ptr // CHECK: %[[LDM32:.*]] = llvm.mlir.constant(32 : index) : i32 // CHECK: nvvm.wmma.store %[[ADDRESS]], %[[LDM32]], %[[EL1]], %[[EL2]], %[[EL3]], %[[EL4]] - // CHECK-SAME: {eltype = #nvvm.mma_type, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : !llvm.ptr, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16> + // CHECK-SAME: {eltype = #nvvm.mma_type, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : !llvm.ptr, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16> // CHECK: llvm.return // CHECK32: %[[INX:.*]] = llvm.mlir.constant(16 : index) : i32 @@ -80,7 +80,7 @@ // CHECK32: %[[ADDRESS:.*]] = llvm.getelementptr %[[BASE]][%[[LIJ]]] : (!llvm.ptr, i32) -> !llvm.ptr // CHECK32: %[[LDM32:.*]] = llvm.mlir.constant(32 : index) : i32 // CHECK32: nvvm.wmma.store %[[ADDRESS]], %[[LDM32]], %[[EL1]], %[[EL2]], %[[EL3]], %[[EL4]] - // CHECK32-SAME: {eltype = #nvvm.mma_type, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : !llvm.ptr, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16> + // CHECK32-SAME: {eltype = #nvvm.mma_type, k = 16 : i32, layout = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : !llvm.ptr, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16> // CHECK32: llvm.return return } @@ -93,7 +93,7 @@ // CHECK-LABEL: func @gpu_wmma_mma_op // CHECK-SAME: (%[[A:.*]]: !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)>, %[[B:.*]]: !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)>, %[[C:.*]]: !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)>) func.func @gpu_wmma_mma_op(%A : !gpu.mma_matrix<16x16xf16, "AOp">, %B : !gpu.mma_matrix<16x16xf16, "BOp">, %C : !gpu.mma_matrix<16x16xf16, "COp">) -> (!gpu.mma_matrix<16x16xf16, "COp">) { - %D = gpu.subgroup_mma_compute %A, %B, %C : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> + %D = gpu.subgroup_mma_compute %A, %B, %C {aTranspose} : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[A1:.*]] = llvm.extractvalue %[[A]][0] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: %[[A2:.*]] = llvm.extractvalue %[[A]][1] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: %[[A3:.*]] = llvm.extractvalue %[[A]][2] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> @@ -115,7 +115,7 @@ // CHECK: %[[C3:.*]] = llvm.extractvalue %[[C]][2] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: %[[C4:.*]] = llvm.extractvalue %[[C]][3] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: %[[RES:.*]] = nvvm.wmma.mma %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]], %[[A7]], %[[A8]], %[[B1]], %[[B2]], %[[B3]], %[[B4]], %[[B5]], %[[B6]], %[[B7]], %[[B8]], %[[C1]], %[[C2]], %[[C3]], %[[C4]] - // CHECK-SAME: {eltypeA = #nvvm.mma_type, eltypeB = #nvvm.mma_type, k = 16 : i32, layoutA = #nvvm.mma_layout, layoutB = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : ( + // CHECK-SAME: {eltypeA = #nvvm.mma_type, eltypeB = #nvvm.mma_type, k = 16 : i32, layoutA = #nvvm.mma_layout, layoutB = #nvvm.mma_layout, m = 16 : i32, n = 16 : i32} : ( // CHECK-SAME: vector<2xf16>, {{.*}}) -> !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> // CHECK: llvm.return %[[RES]] : !llvm.struct<(vector<2xf16>, vector<2xf16>, vector<2xf16>, vector<2xf16>)> return %D : !gpu.mma_matrix<16x16xf16, "COp"> diff --git a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir --- a/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir +++ b/mlir/test/Integration/GPU/CUDA/TensorCore/wmma-matmul-f16.mlir @@ -25,7 +25,9 @@ // Intialize the Input matrix with ones. scf.for %arg0 = %c0 to %c16 step %c1 { scf.for %arg1 = %c0 to %c16 step %c1 { - memref.store %f1, %0[%arg0, %arg1] : memref<16x16xf16> + %2 = arith.index_cast %arg1 : index to i16 + %3 = arith.sitofp %2 : i16 to f16 + memref.store %3, %0[%arg0, %arg1] : memref<16x16xf16> } } // Intialize the accumulator matrix with zeros. @@ -43,7 +45,7 @@ gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %c1, %grid_y = %c1, %grid_z = %c1) threads(%tx, %ty, %tz) in (%block_x = %c32, %block_y = %c1, %block_z = %c1) { - %A = gpu.subgroup_mma_load_matrix %0[%c0, %c0] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> + %A = gpu.subgroup_mma_load_matrix %0[%c0, %c0] {leadDimension = 16 : index, transpose} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> %B = gpu.subgroup_mma_load_matrix %0[%c0, %c0] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> %C = gpu.subgroup_mma_load_matrix %22[%c0, %c0] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> @@ -64,22 +66,22 @@ // Print the memref after computation. call @printMemrefF32(%3) : (memref<*xf32>) -> () - // CHECK: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], - // CHECK-NEXT: [16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16] + // CHECK: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], + // CHECK-NEXT: [0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240], + // CHECK-NEXT: [0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 480], + // CHECK-NEXT: [0, 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, 528, 576, 624, 672, 720], + // CHECK-NEXT: [0, 64, 128, 192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960], + // CHECK-NEXT: [0, 80, 160, 240, 320, 400, 480, 560, 640, 720, 800, 880, 960, 1040, 1120, 1200], + // CHECK-NEXT: [0, 96, 192, 288, 384, 480, 576, 672, 768, 864, 960, 1056, 1152, 1248, 1344, 1440], + // CHECK-NEXT: [0, 112, 224, 336, 448, 560, 672, 784, 896, 1008, 1120, 1232, 1344, 1456, 1568, 1680], + // CHECK-NEXT: [0, 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792, 1920], + // CHECK-NEXT: [0, 144, 288, 432, 576, 720, 864, 1008, 1152, 1296, 1440, 1584, 1728, 1872, 2016, 2160], + // CHECK-NEXT: [0, 160, 320, 480, 640, 800, 960, 1120, 1280, 1440, 1600, 1760, 1920, 2080, 2240, 2400], + // CHECK-NEXT: [0, 176, 352, 528, 704, 880, 1056, 1232, 1408, 1584, 1760, 1936, 2112, 2288, 2464, 2640], + // CHECK-NEXT: [0, 192, 384, 576, 768, 960, 1152, 1344, 1536, 1728, 1920, 2112, 2304, 2496, 2688, 2880], + // CHECK-NEXT: [0, 208, 416, 624, 832, 1040, 1248, 1456, 1664, 1872, 2080, 2288, 2496, 2704, 2912, 3120], + // CHECK-NEXT: [0, 224, 448, 672, 896, 1120, 1344, 1568, 1792, 2016, 2240, 2464, 2688, 2912, 3136, 3360], + // CHECK-NEXT: [0, 240, 480, 720, 960, 1200, 1440, 1680, 1920, 2160, 2400, 2640, 2880, 3120, 3360, 3600]] return }