Index: mlir/include/mlir/Dialect/GPU/IR/GPUOps.td =================================================================== --- mlir/include/mlir/Dialect/GPU/IR/GPUOps.td +++ mlir/include/mlir/Dialect/GPU/IR/GPUOps.td @@ -1117,7 +1117,8 @@ let arguments = (ins Arg:$srcMemref, Variadic:$indices, - IndexAttr:$leadDimension); + IndexAttr:$leadDimension, + OptionalAttr:$transpose); let results = (outs GPU_MMAMatrix:$res); Index: mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp =================================================================== --- mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp +++ mlir/lib/Conversion/GPUToSPIRV/WmmaOpsToSPIRV.cpp @@ -87,8 +87,12 @@ auto i32Type = rewriter.getI32Type(); auto strideValue = rewriter.create( loc, i32Type, IntegerAttr::get(i32Type, stride)); + bool useColMajor = false; + if (auto transposeLoad = subgroupMmaLoadMatrixOp.getTranspose()) { + useColMajor = transposeLoad.value(); + } auto coloumnMajor = rewriter.create( - loc, rewriter.getI1Type(), rewriter.getBoolAttr(false)); + loc, rewriter.getI1Type(), rewriter.getBoolAttr(useColMajor)); rewriter.replaceOpWithNewOp( subgroupMmaLoadMatrixOp, coopType, bufferPtr, strideValue, coloumnMajor, spirv::MemoryAccessAttr()); Index: mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp =================================================================== --- mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp +++ mlir/lib/Conversion/VectorToGPU/VectorToGPU.cpp @@ -127,11 +127,12 @@ AffineExpr zero = b.getAffineConstantExpr(0); auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, readOp.getContext()); + bool isTranspose = !map.isMinorIdentity() && map.getNumDims() == 2; if (!useNvGpu) { - // TODO: Support transpose once it is added to GPU dialect ops. - // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1). - return map.isMinorIdentity() || map == broadcastInnerDim; + bool result = + map.isMinorIdentity() || map == broadcastInnerDim || isTranspose; + return result; } return true; @@ -445,9 +446,10 @@ gpu::MMAMatrixType::get(op.getVectorType().getShape(), op.getVectorType().getElementType(), fragType); OpBuilder b(op); + bool isTranspose = !map.isMinorIdentity() && map.getNumDims() == 2; Value load = b.create( op.getLoc(), type, op.getSource(), op.getIndices(), - b.getIndexAttr(*stride)); + b.getIndexAttr(*stride), b.getBoolAttr(isTranspose)); valueMapping[op.getResult()] = load; } Index: mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir =================================================================== --- mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir +++ mlir/test/Conversion/VectorToGPU/vector-to-mma-ops.mlir @@ -5,11 +5,12 @@ #map2 = affine_map<(d0, d1, d2) -> (d1, d2)> #map3 = affine_map<(d0, d1, d2) -> (d0, d1)> #map4 = affine_map<(d0) -> (d0, 0)> +#map5 = affine_map<(d0, d1) -> (d0, d1)> // CHECK-LABEL: func @matmul -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> -// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16> func.func @matmul(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<16x16xf16>) { @@ -26,8 +27,8 @@ // CHECK-LABEL: func @matmul_cst // CHECK-DAG: %[[CST:.+]] = arith.constant 0.000000e+00 : f16 -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> // CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_constant_matrix %[[CST]] : !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16> @@ -45,8 +46,8 @@ // CHECK-LABEL: func @matmul_broadcast // CHECK-SAME: (%{{.*}}: memref<16x16xf16>, %{{.*}}: memref<16x16xf16>, %{{.*}}: memref<16x16xf16>, %[[F:.*]]: f16) // CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_constant_matrix %[[F]] : !gpu.mma_matrix<16x16xf16, "COp"> -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16> func.func @matmul_broadcast(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<16x16xf16>, %f: f16) { @@ -61,10 +62,10 @@ } // CHECK-LABEL: func @matmul_loop -// CHECK: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index, transpose = false} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[ACC:.+]] = scf.for {{.*}} iter_args(%[[ACC1:.+]] = %[[C]]) -> (!gpu.mma_matrix<16x16xf16, "COp">) { -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index, transpose = false} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 128 : index, transpose = false} : memref<128x128xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> // CHECK-NEXT: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[ACC1]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK-NEXT: scf.yield %[[D]] : !gpu.mma_matrix<16x16xf16, "COp"> // CHECK-NEXT: } @@ -88,8 +89,8 @@ // CHECK-LABEL: func @matmul_fused_elementwise // CHECK-DAG: %[[CST_0:.+]] = arith.constant 0.000000e+00 : f16 // CHECK-DAG: %[[CST_1:.+]] = arith.constant 1.000000e+00 : f16 -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> // CHECK-DAG: %[[C0:.+]] = gpu.subgroup_mma_constant_matrix %[[CST_0]] : !gpu.mma_matrix<16x16xf16, "COp"> // CHECK-DAG: %[[C1:.+]] = gpu.subgroup_mma_constant_matrix %[[CST_1]] : !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C0]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> @@ -110,11 +111,11 @@ // CHECK-LABEL: func @matmul_fused_broadcast // CHECK-DAG: %[[CST_0:.+]] = arith.constant 0.000000e+00 : f16 -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> // CHECK-DAG: %[[C0:.+]] = gpu.subgroup_mma_constant_matrix %[[CST_0]] : !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C0]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> -// CHECK: %[[E:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] {leadDimension = 0 : index} : memref<16x16x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK: %[[E:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}, %{{.*}}] {leadDimension = 0 : index, transpose = false} : memref<16x16x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[F:.+]] = gpu.subgroup_mma_elementwise divf %[[D]], %[[E]] : (!gpu.mma_matrix<16x16xf16, "COp">, !gpu.mma_matrix<16x16xf16, "COp">) -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[F]], %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16> func.func @matmul_fused_broadcast(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>, @@ -135,9 +136,9 @@ // CHECK-LABEL: func @matmul_3Dmemref // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]]] {leadDimension = 0 : index} : memref<16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> -// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index, transpose = false} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]]] {leadDimension = 0 : index, transpose = false} : memref<16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index, transpose = false} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<2x16x16xf16> func.func @matmul_3Dmemref(%arg0: memref<2x16x16xf16>, %arg1: memref<16xf16>, %arg2: memref<2x16x16xf16>) { @@ -154,9 +155,9 @@ // CHECK-LABEL: func @matmul_memref_strided // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index -// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 32 : index} : memref<2x16x16xf16, #{{.*}}> -> !gpu.mma_matrix<16x16xf16, "AOp"> -// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]]] {leadDimension = 0 : index} : memref<16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> -// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 32 : index, transpose = false} : memref<2x16x16xf16, #{{.*}}> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]]] {leadDimension = 0 : index, transpose = false} : memref<16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index, transpose = false} : memref<2x16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> // CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%[[C0]], %[[C0]], %[[C0]]] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<2x16x16xf16> func.func @matmul_memref_strided(%arg0: memref<2x16x16xf16, affine_map<(d0, d1, d2) -> (d0 * 512 + d1 * 32 + d2)>>, %arg1: memref<16xf16>, %arg2: memref<2x16x16xf16>) { @@ -170,3 +171,21 @@ vector.transfer_write %D, %arg2[%c0, %c0, %c0] {in_bounds = [true, true]} : vector<16x16xf16>, memref<2x16x16xf16> return } + +// CHECK-LABEL: func @matmul_transposed +// CHECK-DAG: %[[A:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "AOp"> +// CHECK-DAG: %[[B:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = true} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "BOp"> +// CHECK-DAG: %[[C:.+]] = gpu.subgroup_mma_load_matrix %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index, transpose = false} : memref<16x16xf16> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK: %[[D:.+]] = gpu.subgroup_mma_compute %[[A]], %[[B]], %[[C]] : !gpu.mma_matrix<16x16xf16, "AOp">, !gpu.mma_matrix<16x16xf16, "BOp"> -> !gpu.mma_matrix<16x16xf16, "COp"> +// CHECK: gpu.subgroup_mma_store_matrix %[[D]], %{{.*}}[%{{.*}}, %{{.*}}] {leadDimension = 16 : index} : !gpu.mma_matrix<16x16xf16, "COp">, memref<16x16xf16> +func.func @matmul_transposed(%arg0: memref<16x16xf16>, %arg1: memref<16x16xf16>, %arg2: memref<16x16xf16>) { + %cst_0 = arith.constant dense<0.000000e+00> : vector<16x16xf16> + %c0 = arith.constant 0 : index + %cst = arith.constant 0.000000e+00 : f16 + %A = vector.transfer_read %arg0[%c0, %c0], %cst {in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16> + %B = vector.transfer_read %arg1[%c0, %c0], %cst {permutation_map = #map5, in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16> + %C = vector.transfer_read %arg2[%c0, %c0], %cst {in_bounds = [true, true]} : memref<16x16xf16>, vector<16x16xf16> + %D = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"], kind = #vector.kind} %A, %B, %C : vector<16x16xf16>, vector<16x16xf16> into vector<16x16xf16> + vector.transfer_write %D, %arg2[%c0, %c0] {in_bounds = [true, true]} : vector<16x16xf16>, memref<16x16xf16> + return +}