diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensor.h @@ -33,6 +33,10 @@ /// Returns null-attribute for any type without an encoding. SparseTensorEncodingAttr getSparseTensorEncoding(Type type); +/// Returns true iff the given type is a type for a COO tensor with the last +/// dimension level type being unique. +bool isUniqueCOOType(RankedTensorType tp); + // // Dimension level types. // diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp --- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp +++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp @@ -262,6 +262,22 @@ return nullptr; } +bool mlir::sparse_tensor::isUniqueCOOType(RankedTensorType tp) { + SparseTensorEncodingAttr enc = getSparseTensorEncoding(tp); + + if (!enc) + return false; + + if (!isCompressedDim(tp, 0)) + return false; + + for (uint64_t i = 1, e = tp.getRank(); i < e; ++i) + if (!isSingletonDim(tp, i)) + return false; + + return isUniqueDim(tp, tp.getRank() - 1); +} + uint64_t mlir::sparse_tensor::toOrigDim(const SparseTensorEncodingAttr &enc, uint64_t d) { if (enc) { diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp @@ -155,6 +155,18 @@ return RankedTensorType::get(src.getShape(), src.getElementType(), enc); } +/// Collects the dynamic dimension sizes for `tp` with the assumption that +/// `sizes` are the dimension sizes for the type. Stores the dynamic dimension +/// sizes to dynSizes. +static void getDynamicSizes(RankedTensorType tp, + const SmallVectorImpl &sizes, + SmallVectorImpl &dynSizes) { + for (const auto &d : enumerate(tp.getShape())) { + if (d.value() == ShapedType::kDynamicSize) + dynSizes.push_back(sizes[d.index()]); + } +} + //===---------------------------------------------------------------------===// // The actual sparse tensor rewriting rules. //===---------------------------------------------------------------------===// @@ -460,6 +472,204 @@ } }; +/// Sparse rewriting rule for the convert operator. +struct ConvertRewriter : public OpRewritePattern { + using OpRewritePattern::OpRewritePattern; + LogicalResult matchAndRewrite(ConvertOp op, + PatternRewriter &rewriter) const override { + auto encDst = getSparseTensorEncoding(op.getType()); + auto encSrc = getSparseTensorEncoding(op.getSource().getType()); + if (encDst && encSrc) { + // Trivial tensor conversion is handled in codegen. + if (encSrc == encDst) + return failure(); + return sparse2SparseRewrite(op, rewriter); + } + if (encSrc && !encDst) + return sparse2DenseRewrite(op, rewriter); + if (!encSrc && encDst) + return dense2SparseRewrite(op, rewriter); + + // Dense-to-dense convert is a nop and handled by canonicalization. + return failure(); + } + +private: + // Handles sparse constant to sparse tensor or dense tensor to sparse tensor + // conversion as follows: + // t = new sparse COO tensor + // fill t using src + // dst = convert t + // + // To fill the COO tensor from a dense tensor: + // for i1 in dim1 + // .. + // for ik in dimk + // val = a[i1,..,ik] + // if val != 0 + // t->add(val, [i1,..,ik], [p1,..,pk]) + // + // To fill the COO tensor from a sparse constant in COO format: + // for i in range(NNZ) + // val = values[i] + // [i1,..,ik] = indices[i] + // t->add(val, [i1,..,ik], [p1,..,pk]) + LogicalResult dense2SparseRewrite(ConvertOp op, + PatternRewriter &rewriter) const { + Location loc = op.getLoc(); + Value src = op.getSource(); + RankedTensorType dstTp = op.getType().cast(); + SmallVector sizes; + sizesFromSrc(rewriter, sizes, loc, src); + SmallVector dynSizes; + getDynamicSizes(dstTp, sizes, dynSizes); + + RankedTensorType cooTp = getUnorderedCOOFromType(dstTp); + auto cooBuffer = + rewriter.create(loc, cooTp, dynSizes).getResult(); + unsigned rank = dstTp.cast().getRank(); + + genDenseTensorOrSparseConstantIterLoop( + rewriter, loc, src, rank, + [&](OpBuilder &builder, Location loc, Value val, ValueRange indices) { + builder.create(loc, val, cooBuffer, indices); + }); + + rewriter.setInsertionPointAfter(op); + rewriter.replaceOpWithNewOp(op, dstTp, cooBuffer); + rewriter.create(loc, cooBuffer); + + return success(); + } + + // Handles sparse tensor to dense tensor conversion as follows: + // dst = new dense tensor; + // foreach elemment in src + // dst[elemment.indices] = element.value + LogicalResult sparse2DenseRewrite(ConvertOp op, + PatternRewriter &rewriter) const { + Location loc = op->getLoc(); + RankedTensorType dstTp = op.getType().cast(); + Value src = op.getSource(); + RankedTensorType srcTp = src.getType().cast(); + + SmallVector sizes; + sizesForTensor(rewriter, sizes, loc, srcTp, src); + Value dst = allocDenseTensor(rewriter, loc, dstTp, sizes); + + rewriter.create( + loc, src, [&](OpBuilder &builder, Location loc, ValueRange args) { + builder.create(loc, args.back(), dst, + args.drop_back()); + builder.create(loc); + }); + + rewriter.replaceOpWithNewOp(op, dstTp, dst); + return success(); + } + + // Handles sparse tensor to sparse tensor conversion as follows: + // if src is not COO + // construct a COO to represent the src + // sort the src COO + // foreach elemment in the sorted src COO + // insert element to dst + LogicalResult sparse2SparseRewrite(ConvertOp op, + PatternRewriter &rewriter) const { + Location loc = op->getLoc(); + Value src = op.getSource(); + RankedTensorType srcTp = src.getType().cast(); + RankedTensorType dstTp = op.getType().cast(); + SparseTensorEncodingAttr encSrc = getSparseTensorEncoding(srcTp); + SparseTensorEncodingAttr encDst = getSparseTensorEncoding(dstTp); + + SmallVector srcSizes; + sizesForTensor(rewriter, srcSizes, loc, srcTp, src); + Value tmpCoo = Value(); + if (!isUniqueCOOType(srcTp)) { + // Construct a COO tensor from the src tensor. + // TODO: there may be cases for which more efficiently without + // going through an intermediate COO, such as cases that only change + // the overhead types. + SmallVector dynSrcSizes; + getDynamicSizes(srcTp, srcSizes, dynSrcSizes); + srcTp = getUnorderedCOOFromType(srcTp); + tmpCoo = + rewriter.create(loc, srcTp, dynSrcSizes).getResult(); + rewriter.create( + loc, src, [&](OpBuilder &builder, Location loc, ValueRange args) { + SmallVector indices; + for (int64_t i = 0, e = srcTp.getRank(); i < e; i++) { + uint64_t dim = toStoredDim(encSrc, i); + indices.push_back(args[dim]); + } + builder.create(loc, args.back(), tmpCoo, indices); + builder.create(loc); + }); + src = tmpCoo; + } + + // Sort the COO tensor so that its elements are ordered via increasing + // indices for the storage ordering of the dst tensor. + auto dynShape = {ShapedType::kDynamicSize}; + auto indTp = + MemRefType::get(dynShape, getIndexOverheadType(rewriter, encSrc)); + uint64_t rank = dstTp.getRank(); + // Gather the indices-arrays in the dst tensor storage order. + SmallVector xs(rank, Value()); + for (int64_t i = 0; i < rank; i++) { + uint64_t orgDim = toOrigDim(encSrc, i); + xs[toStoredDim(encDst, orgDim)] = rewriter.create( + loc, indTp, src, rewriter.getIndexAttr(orgDim)); + } + + // Retrieve NNZ. + auto ptrTp = + MemRefType::get(dynShape, getPointerOverheadType(rewriter, encSrc)); + Value p0 = + rewriter.create(loc, ptrTp, src, rewriter.getIndexAttr(0)); + Value c1 = constantIndex(rewriter, loc, 1); + Value nnz = rewriter.create(loc, p0, c1); + nnz = + rewriter.create(loc, rewriter.getIndexType(), nnz); + + // Retrieve the values-array. + auto valTp = MemRefType::get(dynShape, srcTp.getElementType()); + Value y = rewriter.create(loc, valTp, src); + + // Sort the COO tensor. + rewriter.create(loc, nnz, xs, ValueRange{y}); + + // For each element in the COO tensor, insert the element to the dst tensor. + SmallVector dynDstSizes; + getDynamicSizes(dstTp, srcSizes, dynDstSizes); + Value dst = + rewriter.create(loc, dstTp, dynDstSizes).getResult(); + rewriter.create( + loc, src, [&](OpBuilder &builder, Location loc, ValueRange args) { + SmallVector indices; + for (int64_t i = 0, e = srcTp.getRank(); i < e; i++) { + uint64_t dim = toStoredDim(encDst, i); + indices.push_back(args[dim]); + } + builder.create(loc, args.back(), dst, indices); + builder.create(loc); + }); + + // Release the temporary COO if it is created. + if (tmpCoo) + rewriter.create(loc, tmpCoo); + + // Directly replace op with dst results in bufferization error message + // "sparse tensor allocation should not escape function". + // As such, we insert a trivial tensor convert which will be removed by + // codegen. + rewriter.setInsertionPointAfter(op); + rewriter.replaceOpWithNewOp(op, dstTp, dst); + return success(); + } +}; + /// Sparse rewriting rule for the foreach operator. struct ForeachRewriter : public OpRewritePattern { public: @@ -684,17 +894,19 @@ //===---------------------------------------------------------------------===// void mlir::populateSparseTensorRewriting(RewritePatternSet &patterns, bool enableRT, bool enableForeach, - bool /*enableConvert*/) { + bool enableConvert) { patterns.add, ReshapeRewriter>(patterns.getContext()); if (enableForeach) patterns.add(patterns.getContext()); - // TODO: If RT not enabled, rewrite concatenate ops, etc here. - if (!enableRT) + if (!enableRT) { patterns.add, Sparse2SparseReshapeRewriter>( patterns.getContext()); + if (enableConvert) + patterns.add(patterns.getContext()); + } } diff --git a/mlir/test/Dialect/SparseTensor/convert_dense2sparse.mlir b/mlir/test/Dialect/SparseTensor/convert_dense2sparse.mlir --- a/mlir/test/Dialect/SparseTensor/convert_dense2sparse.mlir +++ b/mlir/test/Dialect/SparseTensor/convert_dense2sparse.mlir @@ -1,4 +1,6 @@ // RUN: mlir-opt %s --sparse-tensor-conversion --canonicalize --cse | FileCheck %s +// RUN: mlir-opt %s --sparse-tensor-rewrite="enable-runtime-library=false enable-foreach=false" \ +// RUN: --canonicalize --cse | FileCheck %s --check-prefix=CHECK-RWT #SparseVector = #sparse_tensor.encoding<{ dimLevelType = ["compressed"] @@ -100,6 +102,37 @@ // CHECK: %[[T:.*]] = call @newSparseTensor(%[[X]], %[[Y]], %[[Z]], %{{.*}}, %{{.*}}, %{{.*}}, %[[FromCOO]], %[[C]]) // CHECK: call @delSparseTensorCOOF64(%[[C]]) // CHECK: return %[[T]] : !llvm.ptr + +// CHECK-RWT-LABEL: func.func @sparse_convert_2d( +// CHECK-RWT-SAME: %[[A:.*]]: tensor<2x4xf64>) -> tensor<2x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> { +// CHECK-RWT-DAG: %[[C0:.*]] = arith.constant 0 : index +// CHECK-RWT-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-RWT-DAG: %[[C2:.*]] = arith.constant 2 : index +// CHECK-RWT-DAG: %[[C4:.*]] = arith.constant 4 : index +// CHECK-RWT-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 +// CHECK-RWT: %[[COO:.*]] = bufferization.alloc_tensor() +// CHECK-RWT: scf.for %[[FI:.*]] = %[[C0]] to %[[C2]] step %[[C1]] { +// CHECK-RWT: scf.for %[[FJ:.*]] = %[[C0]] to %[[C4]] step %[[C1]] { +// CHECK-RWT: %[[V:.*]] = tensor.extract %[[A]]{{\[}}%[[FI]], %[[FJ]]] : tensor<2x4xf64> +// CHECK-RWT: %[[NZ:.*]] = arith.cmpf une, %[[V]], %[[F0]] : f64 +// CHECK-RWT: scf.if %[[NZ]] { +// CHECK-RWT: %{{.*}} = sparse_tensor.insert %[[V]] into %[[COO]]{{\[}}%[[FI]], %[[FJ]]] +// CHECK-RWT: } +// CHECK-RWT: } +// CHECK-RWT: } +// CHECK-RWT: %[[I0:.*]] = sparse_tensor.indices %[[COO]] {dimension = 0 : index} +// CHECK-RWT: %[[I1:.*]] = sparse_tensor.indices %[[COO]] {dimension = 1 : index} +// CHECK-RWT: %[[NNZ:.*]] = memref.load %[[I0]]{{\[}}%[[C1]]] : memref +// CHECK-RWT: %[[V2:.*]] = sparse_tensor.values %[[COO]] +// CHECK-RWT: sparse_tensor.sort %[[NNZ]], %[[I0]], %[[I1]] jointly %[[V2]] +// CHECK-RWT: %[[DST:.*]] = bufferization.alloc_tensor() +// CHECK-RWT: sparse_tensor.foreach in %[[COO]] +// CHECK-RWT: ^bb0(%[[FI0:.*]]: index, %[[FI1:.*]]: index, %[[FV:.*]]: f64): +// CHECK-RWT: sparse_tensor.insert %[[FV]] into %[[DST]]{{\[}}%[[FI0]], %[[FI1]]] +// CHECK-RWT: } +// CHECK-RWT: %[[R:.*]] = sparse_tensor.convert %[[DST]] +// CHECK-RWT: bufferization.dealloc_tensor %[[COO]] +// CHECK-RWT: return %[[R]] : tensor<2x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> func.func @sparse_convert_2d(%arg0: tensor<2x4xf64>) -> tensor<2x4xf64, #CSR> { %0 = sparse_tensor.convert %arg0 : tensor<2x4xf64> to tensor<2x4xf64, #CSR> return %0 : tensor<2x4xf64, #CSR> @@ -132,6 +165,35 @@ // CHECK: %[[T:.*]] = call @newSparseTensor(%[[X]], %[[Y]], %[[Z]], %{{.*}}, %{{.*}}, %{{.*}}, %[[FromCOO]], %[[C]]) // CHECK: call @delSparseTensorCOOF32(%[[C]]) // CHECK: return %[[T]] : !llvm.ptr + +// CHECK-RWT-LABEL: func.func @sparse_constant() +// CHECK-RWT-DAG: %[[C0:.*]] = arith.constant 0 : index +// CHECK-RWT-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-RWT-DAG: %[[SI:.*]] = arith.constant dense<{{\[\[}}0, 0], [1, 6]]> : tensor<2x2xi64> +// CHECK-RWT-DAG: %[[SV:.*]] = arith.constant dense<[1.000000e+00, 5.000000e+00]> : tensor<2xf32> +// CHECK-RWT-DAG: %[[C2:.*]] = arith.constant 2 : index +// CHECK-RWT: %[[COO:.*]] = bufferization.alloc_tensor() +// CHECK-RWT: scf.for %[[FI:.*]] = %[[C0]] to %[[C2]] step %[[C1]] { +// CHECK-RWT: %[[I0r:.*]] = tensor.extract %[[SI]]{{\[}}%[[FI]], %[[C0]]] : tensor<2x2xi64> +// CHECK-RWT: %[[I0:.*]] = arith.index_cast %[[I0r]] : i64 to index +// CHECK-RWT: %[[I1r:.*]] = tensor.extract %[[SI]]{{\[}}%[[FI]], %[[C1]]] : tensor<2x2xi64> +// CHECK-RWT: %[[I1:.*]] = arith.index_cast %[[I1r]] : i64 to index +// CHECK-RWT: %[[V:.*]] = tensor.extract %[[SV]]{{\[}}%[[FI]]] : tensor<2xf32> +// CHECK-RWT: sparse_tensor.insert %[[V]] into %[[COO]]{{\[}}%[[I0]], %[[I1]]] +// CHECK-RWT: } +// CHECK-RWT: %[[TI0:.*]] = sparse_tensor.indices %[[COO]] {dimension = 0 : index} +// CHECK-RWT: %[[TI1:.*]] = sparse_tensor.indices %[[COO]] {dimension = 1 : index} +// CHECK-RWT: %[[NNZ:.*]] = memref.load %[[TI0]]{{\[}}%[[C1]]] : memref +// CHECK-RWT: %[[TV:.*]] = sparse_tensor.values %[[COO]] +// CHECK-RWT: sparse_tensor.sort %[[NNZ]], %[[TI0]], %[[TI1]] jointly %[[TV]] +// CHECK-RWT: %[[DST:.*]] = bufferization.alloc_tensor() +// CHECK-RWT: sparse_tensor.foreach in %[[COO]] +// CHECK-RWT: ^bb0(%[[F2I0:.*]]: index, %[[F2I1:.*]]: index, %[[F2V:.*]]: f32): +// CHECK-RWT: sparse_tensor.insert %[[F2V]] into %[[DST]]{{\[}}%[[F2I0]], %[[F2I1]]] +// CHECK-RWT: } +// CHECK-RWT: %[[R:.*]] = sparse_tensor.convert %[[DST]] +// CHECK-RWT: bufferization.dealloc_tensor %[[COO]] +// CHECK-RWT: return %[[R]] : tensor<8x7xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> func.func @sparse_constant() -> tensor<8x7xf32, #CSR>{ // Initialize a tensor. %0 = arith.constant sparse<[[0, 0], [1, 6]], [1.0, 5.0]> : tensor<8x7xf32> diff --git a/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir b/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir --- a/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir +++ b/mlir/test/Dialect/SparseTensor/convert_sparse2dense.mlir @@ -1,5 +1,8 @@ // RUN: mlir-opt %s --sparse-tensor-conversion --canonicalize --cse | FileCheck %s +// RUN: mlir-opt %s --sparse-tensor-rewrite="enable-runtime-library=false enable-foreach=false" \ +// RUN: --canonicalize --cse | FileCheck %s --check-prefix=CHECK-RWT + #SparseVector = #sparse_tensor.encoding<{ dimLevelType = ["compressed"] }> @@ -128,6 +131,18 @@ // CHECK: } // CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref<2x4xf64> // CHECK: return %[[T]] : tensor<2x4xf64> + +// CHECK-RWT-LABEL: func.func @sparse_convert_2d( +// CHECK-RWT-SAME: %[[A:.*]]: tensor<2x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>>) -> tensor<2x4xf64> { +// CHECK-RWT: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 +// CHECK-RWT: %[[B:.*]] = memref.alloc() : memref<2x4xf64> +// CHECK-RWT: linalg.fill ins(%[[F0]] : f64) outs(%[[B]] +// CHECK-RWT: sparse_tensor.foreach in %[[A]] +// CHECK-RWT: ^bb0(%[[FI0:.*]]: index, %[[FI1:.*]]: index, %[[FV:.*]]: f64): +// CHECK-RWT: memref.store %[[FV]], %[[B]]{{\[}}%[[FI0]], %[[FI1]]] +// CHECK-RWT: } +// CHECK-RWT: %[[T:.*]] = bufferization.to_tensor %[[B]] +// CHECK-RWT: return %[[T]] : tensor<2x4xf64> func.func @sparse_convert_2d(%arg0: tensor<2x4xf64, #SparseMatrix>) -> tensor<2x4xf64> { %0 = sparse_tensor.convert %arg0 : tensor<2x4xf64, #SparseMatrix> to tensor<2x4xf64> return %0 : tensor<2x4xf64> @@ -260,6 +275,22 @@ // CHECK: } // CHECK: %[[T:.*]] = bufferization.to_tensor %[[M]] : memref // CHECK: return %[[T]] : tensor + +// CHECK-RWT-LABEL: func.func @sparse_convert_2d_dyn2( +// CHECK-RWT-SAME: %[[A:.*]]: tensor>) -> tensor { +// CHECK-RWT-DAG: %[[C0:.*]] = arith.constant 0 : index +// CHECK-RWT-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-RWT-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 +// CHECK-RWT: %[[D0:.*]] = tensor.dim %[[A]], %[[C0]] +// CHECK-RWT: %[[D1:.*]] = tensor.dim %[[A]], %[[C1]] +// CHECK-RWT: %[[B:.*]] = memref.alloc(%[[D0]], %[[D1]]) +// CHECK-RWT: linalg.fill ins(%[[F0]] : f64) outs(%[[B]] +// CHECK-RWT: sparse_tensor.foreach in %[[A]] +// CHECK-RWT: ^bb0(%[[FI0:.*]]: index, %[[FI1:.*]]: index, %[[FV:.*]]: f64): +// CHECK-RWT: memref.store %[[FV]], %[[B]]{{\[}}%[[FI0]], %[[FI1]]] +// CHECK-RWT: } +// CHECK-RWT: %[[T:.*]] = bufferization.to_tensor %[[B]] +// CHECK-RWT: return %[[T]] : tensor func.func @sparse_convert_2d_dyn2(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor return %0 : tensor diff --git a/mlir/test/Dialect/SparseTensor/convert_sparse2sparse.mlir b/mlir/test/Dialect/SparseTensor/convert_sparse2sparse.mlir --- a/mlir/test/Dialect/SparseTensor/convert_sparse2sparse.mlir +++ b/mlir/test/Dialect/SparseTensor/convert_sparse2sparse.mlir @@ -6,6 +6,9 @@ // RUN: mlir-opt %s --sparse-tensor-conversion="s2s-strategy=0" \ // RUN: --canonicalize --cse | FileCheck %s -check-prefixes=CHECK-AUTO,CHECK +// RUN: mlir-opt %s --sparse-tensor-rewrite="enable-runtime-library=false enable-foreach=false" \ +// RUN: --canonicalize --cse | FileCheck %s --check-prefix=CHECK-RWT + #SparseVector64 = #sparse_tensor.encoding<{ dimLevelType = ["compressed"], pointerBitWidth = 64, @@ -79,6 +82,24 @@ // CHECK-AUTO-DAG: %[[Z:.*]] = memref.cast %[[R]] : memref<1xindex> to memref // CHECK-AUTO: %[[T:.*]] = call @newSparseTensor(%[[X]], %[[Y]], %[[Z]], %{{.*}}, %{{.*}}, %{{.*}}, %[[SparseToSparse]], %[[A]]) // CHECK-AUTO: return %[[T]] : !llvm.ptr + +// CHECK-RWT-LABEL: func.func @sparse_convert( +// CHECK-RWT-SAME: %[[A:.*]]: tensor>) +// CHECK-RWT-DAG: %[[C0:.*]] = arith.constant 0 : index +// CHECK-RWT-DAG: %[[C1:.*]] = arith.constant 1 : index +// CHECK-RWT: %[[D:.*]] = tensor.dim %[[A]], %[[C0]] +// CHECK-RWT: %[[I0:.*]] = sparse_tensor.indices %[[A]] {dimension = 0 : index} +// CHECK-RWT: %[[NNZr:.*]] = memref.load %[[I0]]{{\[}}%[[C1]]] : memref +// CHECK-RWT: %[[NNZ:.*]] = arith.index_cast %[[NNZr]] : i64 to index +// CHECK-RWT: %[[V:.*]] = sparse_tensor.values %[[A]] +// CHECK-RWT: sparse_tensor.sort %[[NNZ]], %[[I0]] jointly %[[V]] +// CHECK-RWT: %[[DST:.*]] = bufferization.alloc_tensor(%[[D]]) +// CHECK-RWT: sparse_tensor.foreach in %[[A]] +// CHECK-RWT: ^bb0(%[[FI2:.*]]: index, %[[FV2:.*]]: f32): +// CHECK-RWT: sparse_tensor.insert %[[FV2]] into %[[DST]]{{\[}}%[[FI2]]] +// CHECK-RWT: } +// CHECK-RWT: %[[R:.*]] = sparse_tensor.convert %[[DST]] +// CHECK-RWT: return %[[R]] : tensor> func.func @sparse_convert(%arg0: tensor) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor to tensor return %0 : tensor diff --git a/mlir/test/Dialect/SparseTensor/rewriting_for_codegen.mlir b/mlir/test/Dialect/SparseTensor/rewriting_for_codegen.mlir --- a/mlir/test/Dialect/SparseTensor/rewriting_for_codegen.mlir +++ b/mlir/test/Dialect/SparseTensor/rewriting_for_codegen.mlir @@ -1,4 +1,5 @@ -// RUN: mlir-opt %s -sparse-tensor-rewrite=enable-runtime-library=false | FileCheck %s +// RUN: mlir-opt %s -sparse-tensor-rewrite="enable-runtime-library=false enable-convert=false" |\ +// RUN: FileCheck %s #CSR = #sparse_tensor.encoding<{ dimLevelType = ["dense", "compressed"] diff --git a/mlir/test/Dialect/SparseTensor/sparse_concat_codegen.mlir b/mlir/test/Dialect/SparseTensor/sparse_concat_codegen.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_concat_codegen.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_concat_codegen.mlir @@ -1,4 +1,5 @@ -// RUN: mlir-opt %s --sparse-tensor-rewrite=enable-runtime-library=false --sparsification | FileCheck %s +// RUN: mlir-opt %s --sparse-tensor-rewrite="enable-runtime-library=false enable-convert=false" \ +// RUN: --sparsification | FileCheck %s #DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}> diff --git a/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir b/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_reshape.mlir @@ -1,6 +1,7 @@ // RUN: mlir-opt %s | mlir-opt | FileCheck %s --check-prefix=CHECK-ROUND // RUN: mlir-opt %s --sparse-tensor-conversion --cse --canonicalize | FileCheck %s --check-prefix=CHECK-CONV -// RUN: mlir-opt %s --sparse-tensor-rewrite=enable-runtime-library=false --cse --canonicalize | FileCheck %s --check-prefix=CHECK-RWT +// RUN: mlir-opt %s --sparse-tensor-rewrite="enable-runtime-library=false enable-convert=false" \ +// RUN: --cse --canonicalize | FileCheck %s --check-prefix=CHECK-RWT #SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>