diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorOps.td @@ -91,7 +91,7 @@ } def SparseTensor_ToPointersOp : SparseTensor_Op<"pointers", [NoSideEffect]>, - Arguments<(ins AnySparseTensor:$tensor, Index:$dim)>, + Arguments<(ins AnySparseTensor:$tensor, IndexAttr:$dimension)>, Results<(outs AnyStridedMemRefOfRank<1>:$result)> { let summary = "Extracts pointers array at given dimension from a tensor"; let description = [{ @@ -106,17 +106,16 @@ Example: ```mlir - %1 = sparse_tensor.pointers %0, %c1 + %1 = sparse_tensor.pointers %0 { dimension = 1 : index } : tensor<64x64xf64, #CSR> to memref ``` }]; - let assemblyFormat = "$tensor `,` $dim attr-dict `:` type($tensor)" - " `to` type($result)"; + let assemblyFormat = "$tensor attr-dict `:` type($tensor) `to` type($result)"; let hasVerifier = 1; } def SparseTensor_ToIndicesOp : SparseTensor_Op<"indices", [NoSideEffect]>, - Arguments<(ins AnySparseTensor:$tensor, Index:$dim)>, + Arguments<(ins AnySparseTensor:$tensor, IndexAttr:$dimension)>, Results<(outs AnyStridedMemRefOfRank<1>:$result)> { let summary = "Extracts indices array at given dimension from a tensor"; let description = [{ @@ -131,12 +130,11 @@ Example: ```mlir - %1 = sparse_tensor.indices %0, %c1 + %1 = sparse_tensor.indices %0 { dimension = 1 : index } : tensor<64x64xf64, #CSR> to memref ``` }]; - let assemblyFormat = "$tensor `,` $dim attr-dict `:` type($tensor)" - " `to` type($result)"; + let assemblyFormat = "$tensor attr-dict `:` type($tensor) `to` type($result)"; let hasVerifier = 1; } @@ -164,8 +162,7 @@ } def SparseTensor_ConcatenateOp : SparseTensor_Op<"concatenate", []>, - Arguments<(ins Variadic:$inputs, - IndexAttr:$dimension)>, + Arguments<(ins Variadic:$inputs, IndexAttr:$dimension)>, Results<(outs AnyRankedTensor:$result)> { let summary = "Concatenates a list of tensors into a single tensor."; diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp --- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp +++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp @@ -226,14 +226,10 @@ // TensorDialect Operations. //===----------------------------------------------------------------------===// -static LogicalResult isInBounds(Value dim, Value tensor) { - IntegerAttr constantAttr; - if (matchPattern(dim, m_Constant(&constantAttr))) { - unsigned d = constantAttr.getInt(); - if (d >= tensor.getType().cast().getRank()) - return failure(); - } - return success(); // in bounds, or symbolic +static LogicalResult isInBounds(uint64_t dim, Value tensor) { + if (dim >= tensor.getType().cast().getRank()) + return failure(); + return success(); // in bounds } static LogicalResult isMatchingWidth(Value result, unsigned width) { @@ -270,7 +266,7 @@ LogicalResult ToPointersOp::verify() { auto e = getSparseTensorEncoding(getTensor().getType()); - if (failed(isInBounds(getDim(), getTensor()))) + if (failed(isInBounds(getDimension().getZExtValue(), getTensor()))) return emitError("requested pointers dimension out of bounds"); if (failed(isMatchingWidth(getResult(), e.getPointerBitWidth()))) return emitError("unexpected type for pointers"); @@ -279,7 +275,7 @@ LogicalResult ToIndicesOp::verify() { auto e = getSparseTensorEncoding(getTensor().getType()); - if (failed(isInBounds(getDim(), getTensor()))) + if (failed(isInBounds(getDimension().getZExtValue(), getTensor()))) return emitError("requested indices dimension out of bounds"); if (failed(isMatchingWidth(getResult(), e.getIndexBitWidth()))) return emitError("unexpected type for indices"); diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorCodegen.cpp @@ -254,13 +254,6 @@ fields.push_back(createAllocation(builder, loc, eltType, valuesSz)); } -/// Returns integral constant, if defined. -static Optional getConstantInt(Value val) { - if (auto constantOp = val.getDefiningOp()) - return constantOp.getValue().cast().getInt(); - return {}; -} - //===----------------------------------------------------------------------===// // Codegen rules. //===----------------------------------------------------------------------===// @@ -354,7 +347,7 @@ auto enc = getSparseTensorEncoding(op.getSource().getType()); if (!enc) return failure(); - Optional index = getConstantInt(adaptor.getIndex()); + Optional index = op.getConstantIndex(); if (!index) return failure(); // Access into static dimension can query original type directly. @@ -473,13 +466,10 @@ // conversion. auto tuple = llvm::cast( adaptor.getTensor().getDefiningOp()); - auto idx = Base::getIndexForOp(tuple, op); - if (!idx) - // Failed to get the index. - return failure(); + unsigned idx = Base::getIndexForOp(tuple, op); auto fields = tuple.getInputs(); - assert(*idx < fields.size()); - rewriter.replaceOp(op, fields[*idx]); + assert(idx < fields.size()); + rewriter.replaceOp(op, fields[idx]); return success(); } }; @@ -490,12 +480,10 @@ public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. - static Optional getIndexForOp(UnrealizedConversionCastOp /*tuple*/, - ToPointersOp op) { - Optional dim = getConstantInt(op.getDim()); - if (!dim) - return llvm::None; // variable dim - return getFieldIndex(op.getTensor().getType(), /*ptrDim=*/*dim, -1); + static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/, + ToPointersOp op) { + uint64_t dim = op.getDimension().getZExtValue(); + return getFieldIndex(op.getTensor().getType(), /*ptrDim=*/dim, -1); } }; @@ -505,12 +493,10 @@ public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. - static Optional getIndexForOp(UnrealizedConversionCastOp /*tuple*/, - ToIndicesOp op) { - Optional dim = getConstantInt(op.getDim()); - if (!dim) - return llvm::None; // variable dim - return getFieldIndex(op.getTensor().getType(), -1, /*idxDim=*/*dim); + static unsigned getIndexForOp(UnrealizedConversionCastOp /*tuple*/, + ToIndicesOp op) { + uint64_t dim = op.getDimension().getZExtValue(); + return getFieldIndex(op.getTensor().getType(), -1, /*idxDim=*/dim); } }; @@ -520,8 +506,8 @@ public: using SparseGetterOpConverter::SparseGetterOpConverter; // Callback for SparseGetterOpConverter. - static Optional getIndexForOp(UnrealizedConversionCastOp tuple, - ToValuesOp /*op*/) { + static unsigned getIndexForOp(UnrealizedConversionCastOp tuple, + ToValuesOp /*op*/) { // The last field holds the value buffer. return tuple.getInputs().size() - 1; } diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorConversion.cpp @@ -1077,8 +1077,10 @@ Type resType = op.getType(); Type ptrType = resType.cast().getElementType(); SmallString<16> name{"sparsePointers", overheadTypeFunctionSuffix(ptrType)}; - replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), - EmitCInterface::On); + Value dim = + constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue()); + replaceOpWithFuncCall(rewriter, op, name, resType, + {adaptor.getTensor(), dim}, EmitCInterface::On); return success(); } }; @@ -1093,8 +1095,10 @@ Type resType = op.getType(); Type indType = resType.cast().getElementType(); SmallString<15> name{"sparseIndices", overheadTypeFunctionSuffix(indType)}; - replaceOpWithFuncCall(rewriter, op, name, resType, adaptor.getOperands(), - EmitCInterface::On); + Value dim = + constantIndex(rewriter, op->getLoc(), op.getDimension().getZExtValue()); + replaceOpWithFuncCall(rewriter, op, name, resType, + {adaptor.getTensor(), dim}, EmitCInterface::On); return success(); } }; diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/Sparsification.cpp @@ -525,7 +525,7 @@ MemRefType::get(dynShape, getPointerOverheadType(builder, enc)); auto indTp = MemRefType::get(dynShape, getIndexOverheadType(builder, enc)); - Value dim = constantIndex(builder, loc, d); + auto dim = builder.getIndexAttr(d); // Generate sparse primitives to obtains pointer and indices. codegen.pointers[tensor][idx] = builder.create(loc, ptrTp, t->get(), dim); diff --git a/mlir/test/Dialect/SparseTensor/codegen.mlir b/mlir/test/Dialect/SparseTensor/codegen.mlir --- a/mlir/test/Dialect/SparseTensor/codegen.mlir +++ b/mlir/test/Dialect/SparseTensor/codegen.mlir @@ -196,8 +196,7 @@ // CHECK-SAME: %[[A5:.*5]]: memref) // CHECK: return %[[A3]] : memref func.func @sparse_pointers_dcsr(%arg0: tensor) -> memref { - %c = arith.constant 1 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 1 : index } : tensor to memref return %0 : memref } @@ -211,8 +210,7 @@ // CHECK-SAME: %[[A5:.*5]]: memref) // CHECK: return %[[A4]] : memref func.func @sparse_indices_dcsr(%arg0: tensor) -> memref { - %c = arith.constant 1 : index - %0 = sparse_tensor.indices %arg0, %c : tensor to memref + %0 = sparse_tensor.indices %arg0 { dimension = 1 : index } : tensor to memref return %0 : memref } diff --git a/mlir/test/Dialect/SparseTensor/conversion.mlir b/mlir/test/Dialect/SparseTensor/conversion.mlir --- a/mlir/test/Dialect/SparseTensor/conversion.mlir +++ b/mlir/test/Dialect/SparseTensor/conversion.mlir @@ -364,8 +364,7 @@ // CHECK: %[[T:.*]] = call @sparsePointers0(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_pointers(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector> to memref return %0 : memref } @@ -375,8 +374,7 @@ // CHECK: %[[T:.*]] = call @sparsePointers64(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_pointers64(%arg0: tensor<128xf64, #SparseVector64>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector64> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector64> to memref return %0 : memref } @@ -386,8 +384,7 @@ // CHECK: %[[T:.*]] = call @sparsePointers32(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_pointers32(%arg0: tensor<128xf64, #SparseVector32>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector32> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector32> to memref return %0 : memref } @@ -397,8 +394,7 @@ // CHECK: %[[T:.*]] = call @sparseIndices0(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_indices(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.indices %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector> to memref return %0 : memref } @@ -408,8 +404,7 @@ // CHECK: %[[T:.*]] = call @sparseIndices64(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_indices64(%arg0: tensor<128xf64, #SparseVector64>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.indices %arg0, %c : tensor<128xf64, #SparseVector64> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector64> to memref return %0 : memref } @@ -419,8 +414,7 @@ // CHECK: %[[T:.*]] = call @sparseIndices32(%[[A]], %[[C]]) : (!llvm.ptr, index) -> memref // CHECK: return %[[T]] : memref func.func @sparse_indices32(%arg0: tensor<128xf64, #SparseVector32>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.indices %arg0, %c : tensor<128xf64, #SparseVector32> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector32> to memref return %0 : memref } diff --git a/mlir/test/Dialect/SparseTensor/fold.mlir b/mlir/test/Dialect/SparseTensor/fold.mlir --- a/mlir/test/Dialect/SparseTensor/fold.mlir +++ b/mlir/test/Dialect/SparseTensor/fold.mlir @@ -27,9 +27,8 @@ // CHECK-NOT: sparse_tensor.values // CHECK: return func.func @sparse_dce_getters(%arg0: tensor<64xf32, #SparseVector>) { - %c = arith.constant 0 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor<64xf32, #SparseVector> to memref - %1 = sparse_tensor.indices %arg0, %c : tensor<64xf32, #SparseVector> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<64xf32, #SparseVector> to memref + %1 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor<64xf32, #SparseVector> to memref %2 = sparse_tensor.values %arg0 : tensor<64xf32, #SparseVector> to memref return } diff --git a/mlir/test/Dialect/SparseTensor/invalid.mlir b/mlir/test/Dialect/SparseTensor/invalid.mlir --- a/mlir/test/Dialect/SparseTensor/invalid.mlir +++ b/mlir/test/Dialect/SparseTensor/invalid.mlir @@ -9,18 +9,16 @@ // ----- func.func @invalid_pointers_dense(%arg0: tensor<128xf64>) -> memref { - %c = arith.constant 0 : index // expected-error@+1 {{'sparse_tensor.pointers' op operand #0 must be sparse tensor of any type values, but got 'tensor<128xf64>'}} - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<128xf64> to memref return %0 : memref } // ----- func.func @invalid_pointers_unranked(%arg0: tensor<*xf64>) -> memref { - %c = arith.constant 0 : index // expected-error@+1 {{'sparse_tensor.pointers' op operand #0 must be sparse tensor of any type values, but got 'tensor<*xf64>'}} - %0 = sparse_tensor.pointers %arg0, %c : tensor<*xf64> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<*xf64> to memref return %0 : memref } @@ -29,9 +27,8 @@ #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"], pointerBitWidth=32}> func.func @mismatch_pointers_types(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 0 : index // expected-error@+1 {{unexpected type for pointers}} - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 0 : index } : tensor<128xf64, #SparseVector> to memref return %0 : memref } @@ -40,27 +37,24 @@ #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}> func.func @pointers_oob(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 1 : index // expected-error@+1 {{requested pointers dimension out of bounds}} - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.pointers %arg0 { dimension = 1 : index } : tensor<128xf64, #SparseVector> to memref return %0 : memref } // ----- func.func @invalid_indices_dense(%arg0: tensor<10x10xi32>) -> memref { - %c = arith.constant 1 : index // expected-error@+1 {{'sparse_tensor.indices' op operand #0 must be sparse tensor of any type values, but got 'tensor<10x10xi32>'}} - %0 = sparse_tensor.indices %arg0, %c : tensor<10x10xi32> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 1 : index } : tensor<10x10xi32> to memref return %0 : memref } // ----- func.func @invalid_indices_unranked(%arg0: tensor<*xf64>) -> memref { - %c = arith.constant 0 : index // expected-error@+1 {{'sparse_tensor.indices' op operand #0 must be sparse tensor of any type values, but got 'tensor<*xf64>'}} - %0 = sparse_tensor.indices %arg0, %c : tensor<*xf64> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor<*xf64> to memref return %0 : memref } @@ -69,9 +63,8 @@ #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}> func.func @mismatch_indices_types(%arg0: tensor) -> memref { - %c = arith.constant 0 : index // expected-error@+1 {{unexpected type for indices}} - %0 = sparse_tensor.indices %arg0, %c : tensor to memref + %0 = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor to memref return %0 : memref } @@ -80,9 +73,8 @@ #SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}> func.func @indices_oob(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 1 : index // expected-error@+1 {{requested indices dimension out of bounds}} - %0 = sparse_tensor.indices %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.indices %arg0 { dimension = 1 : index } : tensor<128xf64, #SparseVector> to memref return %0 : memref } diff --git a/mlir/test/Dialect/SparseTensor/roundtrip.mlir b/mlir/test/Dialect/SparseTensor/roundtrip.mlir --- a/mlir/test/Dialect/SparseTensor/roundtrip.mlir +++ b/mlir/test/Dialect/SparseTensor/roundtrip.mlir @@ -56,12 +56,10 @@ // CHECK-LABEL: func @sparse_pointers( // CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>) -// CHECK: %[[C:.*]] = arith.constant 0 : index -// CHECK: %[[T:.*]] = sparse_tensor.pointers %[[A]], %[[C]] : tensor<128xf64, #{{.*}}> to memref +// CHECK: %[[T:.*]] = sparse_tensor.pointers %[[A]] {dimension = 0 : index} : tensor<128xf64, #{{.*}}> to memref // CHECK: return %[[T]] : memref func.func @sparse_pointers(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.pointers %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.pointers %arg0 {dimension = 0 : index} : tensor<128xf64, #SparseVector> to memref return %0 : memref } @@ -71,12 +69,10 @@ // CHECK-LABEL: func @sparse_indices( // CHECK-SAME: %[[A:.*]]: tensor<128xf64, #{{.*}}>) -// CHECK: %[[C:.*]] = arith.constant 0 : index -// CHECK: %[[T:.*]] = sparse_tensor.indices %[[A]], %[[C]] : tensor<128xf64, #{{.*}}> to memref +// CHECK: %[[T:.*]] = sparse_tensor.indices %[[A]] {dimension = 0 : index} : tensor<128xf64, #{{.*}}> to memref // CHECK: return %[[T]] : memref func.func @sparse_indices(%arg0: tensor<128xf64, #SparseVector>) -> memref { - %c = arith.constant 0 : index - %0 = sparse_tensor.indices %arg0, %c : tensor<128xf64, #SparseVector> to memref + %0 = sparse_tensor.indices %arg0 {dimension = 0 : index} : tensor<128xf64, #SparseVector> to memref return %0 : memref } diff --git a/mlir/test/Dialect/SparseTensor/sparse_1d.mlir b/mlir/test/Dialect/SparseTensor/sparse_1d.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_1d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_1d.mlir @@ -110,8 +110,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_11]] : memref<32xf32>) @@ -162,8 +162,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_8]] : memref<32xf32>) @@ -202,8 +202,8 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_9]] : memref<32xf32>) @@ -310,8 +310,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32> -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>) @@ -367,8 +367,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = bufferization.to_memref %[[VAL_0]] : memref<32xf32> -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_10]] : memref<32xf32>) @@ -403,8 +403,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] @@ -460,8 +460,8 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] @@ -495,11 +495,11 @@ // CHECK-SAME: %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>) @@ -578,11 +578,11 @@ // CHECK-SAME: %[[VAL_2:.*2]]: tensor<32xf32>) -> tensor<32xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_12]] : memref<32xf32>) @@ -640,11 +640,11 @@ // CHECK-SAME: %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> { // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>) @@ -733,11 +733,11 @@ // CHECK-SAME: %[[VAL_3:.*3]]: tensor<16xf32>) -> tensor<16xf32> { // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<16xf32>) @@ -832,7 +832,7 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor> to memref +// CHECK-DAG: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref // CHECK-DAG: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK-DAG: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -874,11 +874,11 @@ // CHECK-SAME: %[[VAL_2:.*2]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref // CHECK: %[[VAL_13:.*]] = memref.load %[[VAL_11]][] : memref @@ -981,12 +981,12 @@ // CHECK-SAME: %[[VAL_3:.*3]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_4]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_2]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_2]] {dimension = 0 : index} : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_13]][] : memref @@ -1099,12 +1099,12 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_0]] : memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_3]], %[[VAL_5]] : tensor> to memref -// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_3]], %[[VAL_5]] : tensor> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_3]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_3]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_3]] : tensor> to memref // CHECK-DAG: %[[VAL_16:.*]] = tensor.dim %[[VAL_4]], %[[VAL_5]] : tensor // CHECK-DAG: %[[VAL_18:.*]] = bufferization.to_memref %[[VAL_4]] @@ -1274,14 +1274,14 @@ // CHECK-SAME: %[[VAL_3:.*3]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_4]] : tensor> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]] {dimension = 0 : index} : tensor> to memref // CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor> to memref // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_15]][] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_2d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_2d.mlir @@ -97,8 +97,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -158,8 +158,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -199,8 +199,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -265,8 +265,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -307,10 +307,10 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -398,10 +398,10 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16xf32>) -> tensor<32x16xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16xf32> // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> @@ -441,15 +441,15 @@ // CHECK-SAME: %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_16]] : memref<32x16xf32>) @@ -605,15 +605,15 @@ // CHECK-SAME: %[[VAL_2:.*2]]: tensor<32x16xf32>) -> tensor<32x16xf32> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_16]] : memref<32x16xf32>) @@ -704,11 +704,11 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_15]] : memref<32x16xf32>) @@ -808,11 +808,11 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf32> // CHECK: linalg.fill ins(%{{.*}} : f32) outs(%[[VAL_13]] : memref<32x16xf32>) @@ -864,8 +864,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<16x32xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<16xf32> @@ -914,7 +914,7 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 10 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_8]][] : memref @@ -959,8 +959,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref // CHECK-DAG: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref @@ -1009,10 +1009,10 @@ // CHECK-SAME: %[[VAL_3:.*3]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK-DAG: %[[VAL_12:.*]] = tensor.dim %[[VAL_2]], %[[VAL_4]] : tensor @@ -1082,16 +1082,16 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant true -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor> to memref // CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_7]] : tensor> to memref -// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_7]] : tensor> to memref +// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor> to memref // CHECK: %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref -// CHECK-DAG: %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_7]] : tensor> to memref -// CHECK-DAG: %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_7]] : tensor> to memref +// CHECK-DAG: %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_2]] {dimension = 1 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_2]] {dimension = 1 : index} : tensor> to memref // CHECK-DAG: %[[VAL_19:.*]] = sparse_tensor.values %[[VAL_2]] : tensor> to memref // CHECK-DAG: %[[VAL_20:.*]] = bufferization.to_memref %[[VAL_3]] : memref // CHECK-DAG: %[[VAL_21:.*]] = bufferization.to_memref %[[VAL_4]] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_3d.mlir b/mlir/test/Dialect/SparseTensor/sparse_3d.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_3d.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_3d.mlir @@ -111,15 +111,14 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant true // CHECK-DAG: %[[VAL_9:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -181,13 +180,12 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -233,8 +231,8 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -304,8 +302,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -345,17 +343,16 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant true // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_9:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_9]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_9]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -445,14 +442,13 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -500,8 +496,8 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -576,8 +572,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -618,17 +614,16 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant true // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_9:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -723,14 +718,13 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -779,10 +773,10 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant true // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -884,10 +878,10 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -930,19 +924,18 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 32 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 16 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant true // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_9:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_8]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_9]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_9]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_16:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_17:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_19:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -1065,15 +1058,14 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32x16x8xf32>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<32x16x8xf32>) -> tensor<32x16x8xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16x8xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "compressed" ] }>> to memref // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32x16x8xf32> // CHECK-DAG: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16x8xf32> @@ -1129,11 +1121,10 @@ // CHECK-SAME: %[[VAL_1:.*1]]: tensor>, // CHECK-SAME: %[[VAL_2:.*2]]: tensor, // CHECK-SAME: %[[VAL_3:.*3]]: tensor) -> tensor { -// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 2 : index} : tensor> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 2 : index} : tensor> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref // CHECK-DAG: %[[VAL_10:.*]] = tensor.dim %[[VAL_2]], %[[VAL_5]] : tensor // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref @@ -1196,10 +1187,9 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor) -> tensor { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 2 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}>> -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}>> -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}>> +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}>> +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20x30xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_11:.*]] = memref.load %[[VAL_10]][] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_affine.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_affine.mlir @@ -21,8 +21,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 3 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<4xf32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf32> @@ -72,8 +72,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34xi32> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi32> @@ -123,8 +123,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 3 : index -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<34x19xf64> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32x16xf64> diff --git a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_fp_ops.mlir @@ -35,8 +35,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -67,8 +67,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -99,8 +99,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -131,8 +131,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref @@ -166,8 +166,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> @@ -226,8 +226,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> @@ -286,8 +286,8 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xf64>) -> tensor<32xf64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> @@ -322,8 +322,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2.000000e+00 : f64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xf64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -355,8 +355,8 @@ // CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index // CHECK: %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_1]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_1]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = memref.alloca(%[[VAL_2]]) : memref // CHECK: %[[BUF:.*]] = memref.alloca() : memref @@ -406,8 +406,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_3:.*]] = complex.constant [0.000000e+00, 1.000000e+00] : complex // CHECK: %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_1]] : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_1]] : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xcomplex, #sparse_tensor.encoding<{{.*}}>> to memref> // CHECK: %[[VAL_8:.*]] = memref.alloca(%[[VAL_2]]) : memref // CHECK: %[[VAL_9:.*]] = memref.alloca() : memref> diff --git a/mlir/test/Dialect/SparseTensor/sparse_index.mlir b/mlir/test/Dialect/SparseTensor/sparse_index.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_index.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_index.mlir @@ -76,10 +76,10 @@ // CHECK-DAG: %[[VAL_4:.*]] = tensor.dim %[[VAL_0]], %[[VAL_1]] : tensor // CHECK: %[[BUF:.*]] = memref.alloca() : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir b/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_int_ops.mlir @@ -30,8 +30,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -91,8 +91,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 0 : i64 -// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -151,8 +151,8 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xi64>) -> tensor<32xi64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -187,8 +187,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : i64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -221,8 +221,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : i64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{.*}}}>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{.*}}}>> +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -255,8 +255,8 @@ // CHECK-SAME: %[[VAL_2:.*]]: tensor<32xi64>) -> tensor<32xi64> { // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -293,8 +293,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -353,8 +353,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant true // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xi64> @@ -411,8 +411,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : i64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -445,8 +445,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : i64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref @@ -479,8 +479,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 2 : i64 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<32xi64> // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_5]]{{\[}}%[[VAL_3]]] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_kernels.mlir @@ -14,10 +14,10 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 30 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<20x30xf32> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x30xf32> @@ -64,15 +64,15 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant false // CHECK-DAG: %[[VAL_7:.*]] = arith.constant true // CHECK: %[[VAL_8:.*]] = bufferization.alloc_tensor() : tensor<4x4xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<4x8xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<8x4xf64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK: %[[VAL_19:.*]] = memref.alloca(%[[VAL_5]]) : memref // CHECK: %[[VAL_20:.*]] = memref.load %[[VAL_9]]{{\[}}%[[VAL_3]]] : memref @@ -159,10 +159,10 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 6 : index // CHECK-DAG: %[[VAL_6:.*]] = bufferization.to_memref %[[VAL_0]] : memref<8x8xi32> -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x3xi32, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_2]] : memref<6x6xi32> // CHECK: %[[VAL_14:.*]] = memref.load %[[VAL_7]]{{\[}}%[[VAL_3]]] : memref @@ -209,10 +209,10 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 5 : index // CHECK-DAG: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_0]] : memref<5x3xi8> -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_5]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-DAG: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_12:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<3x6xi8, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-DAG: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_2]] : memref<5x6xi64> // CHECK: %[[VAL_15:.*]] = memref.load %[[VAL_8]]{{\[}}%[[VAL_4]]] : memref @@ -254,11 +254,11 @@ // CHECK-LABEL: func @sparse_dot( // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0:.*]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0:.*]] {dimension = 0 : index} : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1:.*]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_1:.*]] {dimension = 0 : index} : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<1024xf32, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2:.*]] : memref // CHECK-DAG: %[[VAL_13:.*]] = memref.load %[[VAL_11]][] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_lower.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower.mlir @@ -1,11 +1,11 @@ // RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion | \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse | \ // RUN: FileCheck %s --check-prefix=CHECK-MIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse \ // RUN: --func-bufferize --arith-bufferize \ -// RUN: --tensor-bufferize --finalizing-bufferize | \ +// RUN: --tensor-bufferize --finalizing-bufferize | \ // RUN: FileCheck %s --check-prefix=CHECK-LIR #CSR = #sparse_tensor.encoding<{dimLevelType = [ "dense", "compressed" ]}> @@ -27,8 +27,8 @@ // CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 32 : index // CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-HIR-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> // CHECK-HIR-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower_col.mlir @@ -1,11 +1,11 @@ // RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion | \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse | \ // RUN: FileCheck %s --check-prefix=CHECK-MIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse \ // RUN: --func-bufferize --arith-bufferize \ -// RUN: --tensor-bufferize --finalizing-bufferize | \ +// RUN: --tensor-bufferize --finalizing-bufferize | \ // RUN: FileCheck %s --check-prefix=CHECK-LIR #CSC = #sparse_tensor.encoding<{ @@ -30,8 +30,8 @@ // CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 64 : index // CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-HIR-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref -// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK-HIR-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK-HIR-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref // CHECK-HIR-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref // CHECK-HIR-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> // CHECK-HIR-DAG: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> diff --git a/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir b/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_lower_inplace.mlir @@ -1,11 +1,11 @@ // RUN: mlir-opt %s -sparsification | FileCheck %s --check-prefix=CHECK-HIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion | \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse | \ // RUN: FileCheck %s --check-prefix=CHECK-MIR // -// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion \ +// RUN: mlir-opt %s -sparsification --sparse-tensor-conversion --cse \ // RUN: --func-bufferize --arith-bufferize \ -// RUN: --tensor-bufferize --finalizing-bufferize | \ +// RUN: --tensor-bufferize --finalizing-bufferize | \ // RUN: FileCheck %s --check-prefix=CHECK-LIR #CSR = #sparse_tensor.encoding<{dimLevelType = [ "dense", "compressed" ]}> @@ -27,8 +27,8 @@ // CHECK-HIR-DAG: %[[VAL_3:.*]] = arith.constant 32 : index // CHECK-HIR-DAG: %[[VAL_4:.*]] = arith.constant 0 : index // CHECK-HIR-DAG: %[[VAL_5:.*]] = arith.constant 1 : index -// CHECK-HIR: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK-HIR: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-HIR: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK-HIR: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x64xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK-HIR: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<64xf64> // CHECK-HIR: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<32xf64> diff --git a/mlir/test/Dialect/SparseTensor/sparse_nd.mlir b/mlir/test/Dialect/SparseTensor/sparse_nd.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_nd.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_nd.mlir @@ -25,8 +25,6 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>>, // CHECK-SAME: %[[VAL_2:.*]]: tensor<10x20x30x40x50x60x70x80xf32>) -> tensor<10x20x30x40x50x60x70x80xf32> { // CHECK-DAG: %[[ZERO:.*]] = arith.constant 0.000000e+00 : f32 -// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 3 : index -// CHECK-DAG: %[[VAL_4:.*]] = arith.constant 4 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 10 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 20 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 30 : index @@ -36,10 +34,10 @@ // CHECK-DAG: %[[VAL_11:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_12:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_13:.*]] = bufferization.to_memref %[[VAL_0]] : memref<10x20x30x40x50x60x70x80xf32> -// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref -// CHECK-DAG: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_14:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 3 : index} : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_15:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 3 : index} : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 4 : index} : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref +// CHECK-DAG: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 4 : index} : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_18:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<80x70x60x50x40x30x20x10xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense", "compressed", "compressed", "dense", "dense", "dense" ] }>> to memref // CHECK-DAG: %[[VAL_20:.*]] = bufferization.to_memref %[[VAL_2]] : memref<10x20x30x40x50x60x70x80xf32> // CHECK: linalg.fill ins(%[[ZERO]] : f32) outs(%[[VAL_20]] : memref<10x20x30x40x50x60x70x80xf32> diff --git a/mlir/test/Dialect/SparseTensor/sparse_out.mlir b/mlir/test/Dialect/SparseTensor/sparse_out.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_out.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_out.mlir @@ -28,8 +28,8 @@ // CHECK-DAG: %[[VAL_1:.*]] = arith.constant 2.000000e+00 : f32 // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_9:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref // CHECK: %[[VAL_10:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_3]]] : memref @@ -61,8 +61,8 @@ // CHECK-SAME: %[[VAL_0:.*]]: tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> // CHECK-DAG: %[[VAL_1:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_3:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_1]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> +// CHECK: %[[VAL_3:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> // CHECK: %[[VAL_5:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> // CHECK: %[[VAL_6:.*]] = memref.load %[[VAL_3]]{{\[}}%[[VAL_1]]] : memref // CHECK: %[[VAL_7:.*]] = memref.load %[[VAL_3]]{{\[}}%[[VAL_2]]] : memref @@ -107,8 +107,8 @@ // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 2 : index // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK: %[[VAL_7:.*]] = bufferization.alloc_tensor() : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> -// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> -// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> +// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> +// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10x20xf32, #sparse_tensor.encoding<{{.*}}>> // CHECK: %[[VAL_11:.*]] = memref.alloca(%[[VAL_5]]) : memref // CHECK: %[[BUF:.*]] = memref.alloca() : memref @@ -162,19 +162,19 @@ // CHECK: %[[VAL_6:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor> // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_3]] : tensor> // CHECK: %[[VAL_8:.*]] = bufferization.alloc_tensor(%[[VAL_6]], %[[VAL_7]]) : tensor> -// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor> to memref -// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor> to memref +// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 2 : index} : tensor> to memref +// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 2 : index} : tensor> to memref // CHECK: %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_18:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_19:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_20:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_4]] : tensor> to memref -// CHECK: %[[VAL_21:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_4]] : tensor> to memref +// CHECK: %[[VAL_16:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_17:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_18:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_19:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_20:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 2 : index} : tensor> to memref +// CHECK: %[[VAL_21:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 2 : index} : tensor> to memref // CHECK: %[[VAL_22:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref // CHECK: %[[VAL_23:.*]] = memref.alloca(%[[VAL_4]]) : memref // CHECK: %[[BUF:.*]] = memref.alloca() : memref @@ -323,15 +323,15 @@ // CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_0]], %[[VAL_2]] : tensor> // CHECK: %[[VAL_8:.*]] = tensor.dim %[[VAL_1]], %[[VAL_3]] : tensor> // CHECK: %[[VAL_9:.*]] = bufferization.alloc_tensor(%[[VAL_7]], %[[VAL_8]]) : tensor> -// CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_3]] : tensor> to memref +// CHECK: %[[VAL_10:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_11:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor> to memref // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_0]] : tensor> to memref -// CHECK: %[[VAL_15:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_16:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_2]] : tensor> to memref -// CHECK: %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_3]] : tensor> to memref -// CHECK: %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_3]] : tensor> to memref +// CHECK: %[[VAL_15:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_16:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 0 : index} : tensor> to memref +// CHECK: %[[VAL_17:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor> to memref +// CHECK: %[[VAL_18:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor> to memref // CHECK: %[[VAL_19:.*]] = sparse_tensor.values %[[VAL_1]] : tensor> to memref // CHECK: %[[VAL_20:.*]] = memref.alloca(%[[VAL_4]]) : memref // CHECK: %[[VAL_21:.*]] = memref.load %[[VAL_10]]{{\[}}%[[VAL_2]]] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_outbuf.mlir b/mlir/test/Dialect/SparseTensor/sparse_outbuf.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_outbuf.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_outbuf.mlir @@ -16,8 +16,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<10xi32, #{{.*}}> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<10xi32, #{{.*}}> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<10xi32, #{{.*}}> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<10xi32, #{{.*}}> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10xi32, #{{.*}}> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_1]] : memref<10xf32> // CHECK: linalg.fill ins(%[[VAL_3]] : f32) outs(%[[VAL_8]] : memref<10xf32>) @@ -50,8 +50,8 @@ // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f32 // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index // CHECK: %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<10xf32> -// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_1]] : tensor<10xi32, #{{.*}}> to memref -// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_1]] : tensor<10xi32, #{{.*}}> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<10xi32, #{{.*}}> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<10xi32, #{{.*}}> to memref // CHECK: %[[VAL_7:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10xi32, #{{.*}}> to memref // CHECK: %[[VAL_8:.*]] = bufferization.to_memref %[[VAL_4]] : memref<10xf32> // CHECK: linalg.fill ins(%[[VAL_2]] : f32) outs(%[[VAL_8]] : memref<10xf32>) @@ -83,8 +83,8 @@ // CHECK-SAME: %[[VAL_1:.*]]: tensor<10xf32>) -> tensor<10xf32> { // CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_2]] : tensor<10xf32, #{{.*}}> to memref -// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_2]] : tensor<10xf32, #{{.*}}> to memref +// CHECK: %[[VAL_4:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<10xf32, #{{.*}}> to memref +// CHECK: %[[VAL_5:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<10xf32, #{{.*}}> to memref // CHECK: %[[VAL_6:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<10xf32, #{{.*}}> to memref // CHECK: %[[VAL_7:.*]] = bufferization.to_memref %[[VAL_1]] : memref<10xf32> // CHECK: %[[VAL_8:.*]] = memref.load %[[VAL_4]]{{\[}}%[[VAL_2]]] : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir b/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_scalars.mlir @@ -28,10 +28,10 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK: %[[VAL_8:.*]] = arith.addf %[[VAL_2]], %[[VAL_3]] : f32 -// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_7]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_13:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<32x16xf32, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_14:.*]] = bufferization.to_memref %[[VAL_1]] : memref // CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_4]] : memref<32x16xf32> diff --git a/mlir/test/Dialect/SparseTensor/sparse_sddmm.mlir b/mlir/test/Dialect/SparseTensor/sparse_sddmm.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_sddmm.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_sddmm.mlir @@ -68,10 +68,10 @@ // CHECK: %[[VAL_8:.*]] = bufferization.alloc_tensor() copy(%[[VAL_6]]) {bufferization.escape = [false], memory_space = 0 : ui64} : tensor<8x8xf64> // CHECK: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_1]] : memref<8x8xf64> // CHECK: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_2]] : memref<8x8xf64> -// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_11:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_12:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_15:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_16:.*]] = bufferization.to_memref %[[VAL_8]] : memref<8x8xf64> // CHECK: %[[VAL_17:.*]] = memref.load %[[VAL_11]]{{\[}}%[[VAL_4]]] : memref @@ -137,10 +137,10 @@ // CHECK: %[[VAL_10:.*]] = bufferization.alloc_tensor() {bufferization.escape = [false]} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> // CHECK: %[[VAL_11:.*]] = bufferization.to_memref %[[VAL_1]] : memref<8x8xf64> // CHECK: %[[VAL_12:.*]] = bufferization.to_memref %[[VAL_2]] : memref<8x8xf64> -// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_4]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_4]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_15:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref -// CHECK: %[[VAL_16:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_13:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_14:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_15:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref +// CHECK: %[[VAL_16:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 1 : index} : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_17:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8x8xf64, #sparse_tensor.encoding<{{.*}}>> to memref // CHECK: %[[VAL_18:.*]] = memref.alloca(%[[VAL_6]]) : memref // CHECK: %[[VAL_19:.*]] = memref.alloca() : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir b/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_transpose.mlir @@ -22,10 +22,10 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 2 : index // CHECK: %[[VAL_4:.*]] = bufferization.alloc_tensor() : tensor<4x3xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> // CHECK: %[[VAL_5:.*]] = sparse_tensor.convert %[[VAL_0]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }>> to tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> -// CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_5]], %[[VAL_1]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref -// CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_5]], %[[VAL_1]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref -// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_5]], %[[VAL_2]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref -// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_5]], %[[VAL_2]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_5]] {dimension = 0 : index} : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_5]] {dimension = 0 : index} : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK: %[[VAL_8:.*]] = sparse_tensor.pointers %[[VAL_5]] {dimension = 1 : index} : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref +// CHECK: %[[VAL_9:.*]] = sparse_tensor.indices %[[VAL_5]] {dimension = 1 : index} : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref // CHECK: %[[VAL_10:.*]] = sparse_tensor.values %[[VAL_5]] : tensor<3x4xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>> to memref // CHECK: %[[VAL_11:.*]] = memref.alloca(%[[VAL_3]]) : memref // CHECK: %[[VAL_12:.*]] = memref.alloca() : memref diff --git a/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir b/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_vector_chain.mlir @@ -26,11 +26,11 @@ // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index // CHECK-DAG: %[[VAL_7:.*]] = arith.constant 64 : index // CHECK-DAG: %[[VAL_8:.*]] = arith.constant 1 : index -// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_9:.*]] = sparse_tensor.pointers %[[VAL_1]] {dimension = 1 : index} : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_10:.*]] = sparse_tensor.indices %[[VAL_1]] {dimension = 1 : index} : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_11:.*]] = sparse_tensor.values %[[VAL_1]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> -// CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]], %[[VAL_8]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_12:.*]] = sparse_tensor.pointers %[[VAL_2]] {dimension = 1 : index} : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> +// CHECK: %[[VAL_13:.*]] = sparse_tensor.indices %[[VAL_2]] {dimension = 1 : index} : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_14:.*]] = sparse_tensor.values %[[VAL_2]] : tensor<64x32xf64, #sparse_tensor.encoding<{{{.*}}}>> // CHECK: %[[VAL_15:.*]] = bufferization.to_memref %[[VAL_0]] : memref // CHECK: %[[VAL_16:.*]] = tensor.extract %[[VAL_0]][] : tensor diff --git a/mlir/test/Dialect/SparseTensor/sparse_vector_index.mlir b/mlir/test/Dialect/SparseTensor/sparse_vector_index.mlir --- a/mlir/test/Dialect/SparseTensor/sparse_vector_index.mlir +++ b/mlir/test/Dialect/SparseTensor/sparse_vector_index.mlir @@ -29,8 +29,8 @@ // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 1 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : i64 // CHECK-DAG: %[[VAL_6:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_6]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_6]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_9:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_10a:.*]] = linalg.init_tensor [8] : tensor<8xi64> // CHECK-DAG: %[[VAL_10:.*]] = bufferization.to_memref %[[VAL_10a]] : memref<8xi64> @@ -70,8 +70,8 @@ // CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : i64 // CHECK-DAG: %[[VAL_4:.*]] = arith.constant 8 : index // CHECK-DAG: %[[VAL_5:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]], %[[VAL_5]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref -// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]], %[[VAL_5]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_6:.*]] = sparse_tensor.pointers %[[VAL_0]] {dimension = 0 : index} : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref +// CHECK-DAG: %[[VAL_7:.*]] = sparse_tensor.indices %[[VAL_0]] {dimension = 0 : index} : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_8:.*]] = sparse_tensor.values %[[VAL_0]] : tensor<8xi64, #sparse_tensor.encoding<{{{.*}}}>> to memref // CHECK-DAG: %[[VAL_9a:.*]] = linalg.init_tensor [8] : tensor<8xi64> // CHECK-DAG: %[[VAL_9:.*]] = bufferization.to_memref %[[VAL_9a]] : memref<8xi64> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_constant_to_sparse_tensor.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_constant_to_sparse_tensor.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_constant_to_sparse_tensor.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_constant_to_sparse_tensor.mlir @@ -26,12 +26,12 @@ %ts = sparse_tensor.convert %ti : tensor<10x8xf64> to tensor<10x8xf64, #Tensor1> // CHECK: ( 0, 1, 4, 5, 6, 9 ) - %i0 = sparse_tensor.indices %ts, %c0 : tensor<10x8xf64, #Tensor1> to memref + %i0 = sparse_tensor.indices %ts { dimension = 0 : index } : tensor<10x8xf64, #Tensor1> to memref %i0r = vector.transfer_read %i0[%c0], %c0: memref, vector<6xindex> vector.print %i0r : vector<6xindex> // CHECK: ( 0, 7, 2, 2, 3, 4, 6, 7 ) - %i1 = sparse_tensor.indices %ts, %c1 : tensor<10x8xf64, #Tensor1> to memref + %i1 = sparse_tensor.indices %ts { dimension = 1 : index } : tensor<10x8xf64, #Tensor1> to memref %i1r = vector.transfer_read %i1[%c0], %c0: memref, vector<8xindex> vector.print %i1r : vector<8xindex> diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion.mlir @@ -168,45 +168,45 @@ // CHECK-NEXT: ( 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) // CHECK-NEXT: ( 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0 ) // - %v10 = sparse_tensor.indices %1, %c0 : tensor<2x3x4xf64, #Tensor1> to memref - %v11 = sparse_tensor.indices %1, %c1 : tensor<2x3x4xf64, #Tensor1> to memref - %v12 = sparse_tensor.indices %1, %c2 : tensor<2x3x4xf64, #Tensor1> to memref - %v20 = sparse_tensor.indices %2, %c0 : tensor<2x3x4xf64, #Tensor2> to memref - %v21 = sparse_tensor.indices %2, %c1 : tensor<2x3x4xf64, #Tensor2> to memref - %v22 = sparse_tensor.indices %2, %c2 : tensor<2x3x4xf64, #Tensor2> to memref - %v30 = sparse_tensor.indices %3, %c0 : tensor<2x3x4xf64, #Tensor3> to memref - %v31 = sparse_tensor.indices %3, %c1 : tensor<2x3x4xf64, #Tensor3> to memref - %v32 = sparse_tensor.indices %3, %c2 : tensor<2x3x4xf64, #Tensor3> to memref + %v10 = sparse_tensor.indices %1 { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %v11 = sparse_tensor.indices %1 { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %v12 = sparse_tensor.indices %1 { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %v20 = sparse_tensor.indices %2 { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %v21 = sparse_tensor.indices %2 { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %v22 = sparse_tensor.indices %2 { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %v30 = sparse_tensor.indices %3 { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %v31 = sparse_tensor.indices %3 { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %v32 = sparse_tensor.indices %3 { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref - %a10 = sparse_tensor.indices %a, %c0 : tensor<2x3x4xf64, #Tensor1> to memref - %a11 = sparse_tensor.indices %a, %c1 : tensor<2x3x4xf64, #Tensor1> to memref - %a12 = sparse_tensor.indices %a, %c2 : tensor<2x3x4xf64, #Tensor1> to memref - %b10 = sparse_tensor.indices %b, %c0 : tensor<2x3x4xf64, #Tensor1> to memref - %b11 = sparse_tensor.indices %b, %c1 : tensor<2x3x4xf64, #Tensor1> to memref - %b12 = sparse_tensor.indices %b, %c2 : tensor<2x3x4xf64, #Tensor1> to memref - %c10 = sparse_tensor.indices %c, %c0 : tensor<2x3x4xf64, #Tensor1> to memref - %c11 = sparse_tensor.indices %c, %c1 : tensor<2x3x4xf64, #Tensor1> to memref - %c12 = sparse_tensor.indices %c, %c2 : tensor<2x3x4xf64, #Tensor1> to memref + %a10 = sparse_tensor.indices %a { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %a11 = sparse_tensor.indices %a { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %a12 = sparse_tensor.indices %a { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %b10 = sparse_tensor.indices %b { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %b11 = sparse_tensor.indices %b { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %b12 = sparse_tensor.indices %b { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %c10 = sparse_tensor.indices %c { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %c11 = sparse_tensor.indices %c { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor1> to memref + %c12 = sparse_tensor.indices %c { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor1> to memref - %d20 = sparse_tensor.indices %d, %c0 : tensor<2x3x4xf64, #Tensor2> to memref - %d21 = sparse_tensor.indices %d, %c1 : tensor<2x3x4xf64, #Tensor2> to memref - %d22 = sparse_tensor.indices %d, %c2 : tensor<2x3x4xf64, #Tensor2> to memref - %e20 = sparse_tensor.indices %e, %c0 : tensor<2x3x4xf64, #Tensor2> to memref - %e21 = sparse_tensor.indices %e, %c1 : tensor<2x3x4xf64, #Tensor2> to memref - %e22 = sparse_tensor.indices %e, %c2 : tensor<2x3x4xf64, #Tensor2> to memref - %f20 = sparse_tensor.indices %f, %c0 : tensor<2x3x4xf64, #Tensor2> to memref - %f21 = sparse_tensor.indices %f, %c1 : tensor<2x3x4xf64, #Tensor2> to memref - %f22 = sparse_tensor.indices %f, %c2 : tensor<2x3x4xf64, #Tensor2> to memref + %d20 = sparse_tensor.indices %d { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %d21 = sparse_tensor.indices %d { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %d22 = sparse_tensor.indices %d { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %e20 = sparse_tensor.indices %e { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %e21 = sparse_tensor.indices %e { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %e22 = sparse_tensor.indices %e { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %f20 = sparse_tensor.indices %f { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %f21 = sparse_tensor.indices %f { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor2> to memref + %f22 = sparse_tensor.indices %f { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor2> to memref - %g30 = sparse_tensor.indices %g, %c0 : tensor<2x3x4xf64, #Tensor3> to memref - %g31 = sparse_tensor.indices %g, %c1 : tensor<2x3x4xf64, #Tensor3> to memref - %g32 = sparse_tensor.indices %g, %c2 : tensor<2x3x4xf64, #Tensor3> to memref - %h30 = sparse_tensor.indices %h, %c0 : tensor<2x3x4xf64, #Tensor3> to memref - %h31 = sparse_tensor.indices %h, %c1 : tensor<2x3x4xf64, #Tensor3> to memref - %h32 = sparse_tensor.indices %h, %c2 : tensor<2x3x4xf64, #Tensor3> to memref - %i30 = sparse_tensor.indices %i, %c0 : tensor<2x3x4xf64, #Tensor3> to memref - %i31 = sparse_tensor.indices %i, %c1 : tensor<2x3x4xf64, #Tensor3> to memref - %i32 = sparse_tensor.indices %i, %c2 : tensor<2x3x4xf64, #Tensor3> to memref + %g30 = sparse_tensor.indices %g { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %g31 = sparse_tensor.indices %g { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %g32 = sparse_tensor.indices %g { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %h30 = sparse_tensor.indices %h { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %h31 = sparse_tensor.indices %h { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %h32 = sparse_tensor.indices %h { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %i30 = sparse_tensor.indices %i { dimension = 0 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %i31 = sparse_tensor.indices %i { dimension = 1 : index } : tensor<2x3x4xf64, #Tensor3> to memref + %i32 = sparse_tensor.indices %i { dimension = 2 : index } : tensor<2x3x4xf64, #Tensor3> to memref call @dumpidx(%v10) : (memref) -> () call @dumpidx(%v11) : (memref) -> () diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_ptr.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_ptr.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_ptr.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_conversion_ptr.mlir @@ -114,12 +114,12 @@ // CHECK-NEXT: ( 0, 1, 63, 0, 1, 0, 63, -1 ) // CHECK-NEXT: ( 0, 1, 63, 0, 1, 0, 63, -1 ) // - %i1 = sparse_tensor.indices %1, %c1 : tensor<32x64xf64, #DCSR> to memref - %i2 = sparse_tensor.indices %2, %c1 : tensor<32x64xf64, #DCSC> to memref - %i3 = sparse_tensor.indices %3, %c1 : tensor<32x64xf64, #CSC> to memref - %i4 = sparse_tensor.indices %4, %c1 : tensor<32x64xf64, #DCSC> to memref - %i5 = sparse_tensor.indices %5, %c1 : tensor<32x64xf64, #DCSR> to memref - %i6 = sparse_tensor.indices %6, %c1 : tensor<32x64xf64, #DCSR> to memref + %i1 = sparse_tensor.indices %1 { dimension = 1 : index } : tensor<32x64xf64, #DCSR> to memref + %i2 = sparse_tensor.indices %2 { dimension = 1 : index } : tensor<32x64xf64, #DCSC> to memref + %i3 = sparse_tensor.indices %3 { dimension = 1 : index } : tensor<32x64xf64, #CSC> to memref + %i4 = sparse_tensor.indices %4 { dimension = 1 : index } : tensor<32x64xf64, #DCSC> to memref + %i5 = sparse_tensor.indices %5 { dimension = 1 : index } : tensor<32x64xf64, #DCSR> to memref + %i6 = sparse_tensor.indices %6 { dimension = 1 : index } : tensor<32x64xf64, #DCSR> to memref call @dumpi08(%i1) : (memref) -> () call @dumpi64(%i2) : (memref) -> () call @dumpi32(%i3) : (memref) -> () diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_re_im.mlir @@ -52,7 +52,7 @@ %values = sparse_tensor.values %arg0 : tensor to memref %0 = vector.transfer_read %values[%c0], %d0: memref, vector<4xf32> vector.print %0 : vector<4xf32> - %indices = sparse_tensor.indices %arg0, %c0 : tensor to memref + %indices = sparse_tensor.indices %arg0 { dimension = 0 : index } : tensor to memref %1 = vector.transfer_read %indices[%c0], %c0: memref, vector<4xindex> vector.print %1 : vector<4xindex> return diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir --- a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir @@ -105,10 +105,10 @@ // CHECK: ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7, 6 ) // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ) // - %7 = sparse_tensor.pointers %1, %c1 : tensor<10x8xf64, #CSR> to memref + %7 = sparse_tensor.pointers %1 { dimension = 1 : index } : tensor<10x8xf64, #CSR> to memref %8 = vector.transfer_read %7[%c0], %c0: memref, vector<11xindex> vector.print %8 : vector<11xindex> - %9 = sparse_tensor.indices %1, %c1 : tensor<10x8xf64, #CSR> to memref + %9 = sparse_tensor.indices %1 { dimension = 1 : index } : tensor<10x8xf64, #CSR> to memref %10 = vector.transfer_read %9[%c0], %c0: memref, vector<17xindex> vector.print %10 : vector<17xindex> %11 = sparse_tensor.values %1 : tensor<10x8xf64, #CSR> to memref @@ -130,16 +130,16 @@ // CHECK: ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7, 6 ) // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ) // - %13 = sparse_tensor.pointers %2, %c0 : tensor<10x8xf64, #DCSR> to memref + %13 = sparse_tensor.pointers %2 { dimension = 0 : index } : tensor<10x8xf64, #DCSR> to memref %14 = vector.transfer_read %13[%c0], %c0: memref, vector<2xindex> vector.print %14 : vector<2xindex> - %15 = sparse_tensor.indices %2, %c0 : tensor<10x8xf64, #DCSR> to memref + %15 = sparse_tensor.indices %2 { dimension = 0 : index } : tensor<10x8xf64, #DCSR> to memref %16 = vector.transfer_read %15[%c0], %c0: memref, vector<8xindex> vector.print %16 : vector<8xindex> - %17 = sparse_tensor.pointers %2, %c1 : tensor<10x8xf64, #DCSR> to memref + %17 = sparse_tensor.pointers %2 { dimension = 1 : index } : tensor<10x8xf64, #DCSR> to memref %18 = vector.transfer_read %17[%c0], %c0: memref, vector<9xindex> vector.print %18 : vector<9xindex> - %19 = sparse_tensor.indices %2, %c1 : tensor<10x8xf64, #DCSR> to memref + %19 = sparse_tensor.indices %2 { dimension = 1 : index } : tensor<10x8xf64, #DCSR> to memref %20 = vector.transfer_read %19[%c0], %c0: memref, vector<17xindex> vector.print %20 : vector<17xindex> %21 = sparse_tensor.values %2 : tensor<10x8xf64, #DCSR> to memref @@ -157,10 +157,10 @@ // CHECK: ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 9, 0, 5, 6, 7 ) // CHECK: ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 17, 3, 9, 12, 16 ) // - %23 = sparse_tensor.pointers %3, %c1 : tensor<10x8xf64, #CSC> to memref + %23 = sparse_tensor.pointers %3 { dimension = 1 : index } : tensor<10x8xf64, #CSC> to memref %24 = vector.transfer_read %23[%c0], %c0: memref, vector<9xindex> vector.print %24 : vector<9xindex> - %25 = sparse_tensor.indices %3, %c1 : tensor<10x8xf64, #CSC> to memref + %25 = sparse_tensor.indices %3 { dimension = 1 : index } : tensor<10x8xf64, #CSC> to memref %26 = vector.transfer_read %25[%c0], %c0: memref, vector<17xindex> vector.print %26 : vector<17xindex> %27 = sparse_tensor.values %3 : tensor<10x8xf64, #CSC> to memref @@ -182,16 +182,16 @@ // CHECK: ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 9, 0, 5, 6, 7 ) // CHECK: ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 17, 3, 9, 12, 16 ) // - %29 = sparse_tensor.pointers %4, %c0 : tensor<10x8xf64, #DCSC> to memref + %29 = sparse_tensor.pointers %4 { dimension = 0 : index } : tensor<10x8xf64, #DCSC> to memref %30 = vector.transfer_read %29[%c0], %c0: memref, vector<2xindex> vector.print %30 : vector<2xindex> - %31 = sparse_tensor.indices %4, %c0 : tensor<10x8xf64, #DCSC> to memref + %31 = sparse_tensor.indices %4 { dimension = 0 : index } : tensor<10x8xf64, #DCSC> to memref %32 = vector.transfer_read %31[%c0], %c0: memref, vector<7xindex> vector.print %32 : vector<7xindex> - %33 = sparse_tensor.pointers %4, %c1 : tensor<10x8xf64, #DCSC> to memref + %33 = sparse_tensor.pointers %4 { dimension = 1 : index } : tensor<10x8xf64, #DCSC> to memref %34 = vector.transfer_read %33[%c0], %c0: memref, vector<8xindex> vector.print %34 : vector<8xindex> - %35 = sparse_tensor.indices %4, %c1 : tensor<10x8xf64, #DCSC> to memref + %35 = sparse_tensor.indices %4 { dimension = 1 : index } : tensor<10x8xf64, #DCSC> to memref %36 = vector.transfer_read %35[%c0], %c0: memref, vector<17xindex> vector.print %36 : vector<17xindex> %37 = sparse_tensor.values %4 : tensor<10x8xf64, #DCSC> to memref @@ -212,10 +212,10 @@ // CHECK-SAME: 0, 7, 8, 0, 0, 0, 0, 9, 0, 0, 10, 0, 0, 0, 11, 12, // CHECK-SAME: 0, 13, 14, 0, 0, 0, 15, 16, 0, 0, 0, 0, 0, 0, 17, 0 ) // - %39 = sparse_tensor.pointers %x, %c0 : tensor<10x8xf64, #BlockRow> to memref + %39 = sparse_tensor.pointers %x { dimension = 0 : index } : tensor<10x8xf64, #BlockRow> to memref %40 = vector.transfer_read %39[%c0], %c0: memref, vector<2xindex> vector.print %40 : vector<2xindex> - %41 = sparse_tensor.indices %x, %c0 : tensor<10x8xf64, #BlockRow> to memref + %41 = sparse_tensor.indices %x { dimension = 0 : index } : tensor<10x8xf64, #BlockRow> to memref %42 = vector.transfer_read %41[%c0], %c0: memref, vector<8xindex> vector.print %42 : vector<8xindex> %43 = sparse_tensor.values %x : tensor<10x8xf64, #BlockRow> to memref @@ -235,10 +235,10 @@ // CHECK-SAME: 0, 8, 10, 14, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, // CHECK-SAME: 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 15, 0, 17, 3, 0, 0, 0, 0, 9, 12, 16, 0, 0 ) // - %45 = sparse_tensor.pointers %y, %c0 : tensor<10x8xf64, #BlockCol> to memref + %45 = sparse_tensor.pointers %y { dimension = 0 : index } : tensor<10x8xf64, #BlockCol> to memref %46 = vector.transfer_read %45[%c0], %c0: memref, vector<2xindex> vector.print %46 : vector<2xindex> - %47 = sparse_tensor.indices %y, %c0 : tensor<10x8xf64, #BlockCol> to memref + %47 = sparse_tensor.indices %y { dimension = 0 : index } : tensor<10x8xf64, #BlockCol> to memref %48 = vector.transfer_read %47[%c0], %c0: memref, vector<7xindex> vector.print %48 : vector<7xindex> %49 = sparse_tensor.values %y : tensor<10x8xf64, #BlockCol> to memref