diff --git a/mlir/include/mlir-c/Dialect/SparseTensor.h b/mlir/include/mlir-c/Dialect/SparseTensor.h --- a/mlir/include/mlir-c/Dialect/SparseTensor.h +++ b/mlir/include/mlir-c/Dialect/SparseTensor.h @@ -19,11 +19,8 @@ MLIR_DECLARE_CAPI_DIALECT_REGISTRATION(SparseTensor, sparse_tensor); -/// Dimension level types that define sparse tensors: -/// - MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE - dimension is dense, every -/// entry is stored -/// - MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED - dimension is sparse, -/// only nonzeros are stored (no duplicates). +/// Dimension level types (and properties) that define sparse tensors. +/// See the documentation in SparseTensorAttrDefs.td for their meaning. /// /// These correspond to SparseTensorEncodingAttr::DimLevelType in the C++ API. /// If updating, keep them in sync and update the static_assert in the impl @@ -31,6 +28,13 @@ enum MlirSparseTensorDimLevelType { MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE, MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED, + MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU, + MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO, + MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO, + MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON, + MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU, + MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO, + MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO, }; //===----------------------------------------------------------------------===// diff --git a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td --- a/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td +++ b/mlir/include/mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.td @@ -16,7 +16,7 @@ // All of the Tensor attributes will extend this class. class SparseTensor_Attr traits = []> - : AttrDef; + : AttrDef; // Sparse tensor encoding attribute. def SparseTensorEncodingAttr : SparseTensor_Attr<"SparseTensorEncoding", @@ -34,9 +34,21 @@ The attribute consists of the following fields. - Dimension level type for each dimension of a tensor type: - **dense** : dimension is dense, all entries along this dimension - are stored. + are stored - **compressed** : dimension is sparse, only nonzeros along this dimensions - are stored, without duplicates, i.e., compressed (unique). + are stored + - **singleton** : dimension contains a single coordinate, no siblings + By default, each dimension level types has the property of being unique + (no duplicates at that level) and ordered (indices appear sorted at that + level). The following two suffixes can be used to make the last two + dimension level types not-unique (duplicates may appear) and not-ordered + (indices may appear unsorted). + - **-nu** : not unique + - **-no** : not ordered + Currently, these suffixes, is present, should appear in this order. + In the future, we may introduce many more dimension level types and + properties, and separate specifying the two completely rather than + using this suffix mechanism. - Dimension ordering on the indices of this tensor type. Unlike dense storage, most sparse storage schemes do not provide fast random access. This affine map specifies the order of dimensions that should be supported @@ -62,6 +74,12 @@ }> ... tensor ... + // Sorted Coordinate Scheme. + #SortedCOO = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed-nu, "singleton" ] + }> + ... tensor ... + // Doubly compressed sparse column storage with specific bitwidths. #DCSC = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], @@ -76,10 +94,10 @@ // Data in sparse tensor encoding. let parameters = ( ins - // A dimension level type for each dimension of a tensor type. + // A dimension level type for each dimension of the tensor type. ArrayRefParameter< "SparseTensorEncodingAttr::DimLevelType", - "Per-dimension level type (dense or compressed)" + "per dimension level type" >: $dimLevelType, // A dimension order on the indices of this tensor type. // TODO: block structure with higher-dim inputs @@ -94,9 +112,16 @@ let hasCustomAssemblyFormat = 1; let extraClassDeclaration = [{ - // Dimension level types. + // Dimension level types. By default, each type has the unique and + // ordered properties. Alternatives properties are indicated by + // Nu (not-unique) and No (not-ordered). + // + // TODO: separate type and property in encoding + // enum class DimLevelType { - Dense, Compressed + Dense, + Compressed, CompressedNu, CompressedNo, CompressedNuNo, + Singleton, SingletonNu, SingletonNo, SingletonNuNo, }; }]; } diff --git a/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h b/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h --- a/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h +++ b/mlir/include/mlir/ExecutionEngine/SparseTensorUtils.h @@ -109,7 +109,7 @@ kSparseToSparse = 3, kEmptyCOO = 4, kToCOO = 5, - kToIterator = 6 + kToIterator = 6, }; /// This enum mimics `SparseTensorEncodingAttr::DimLevelType` for @@ -118,7 +118,13 @@ enum class DimLevelType : uint8_t { kDense = 0, kCompressed = 1, - kSingleton = 2 + kCompressedNu = 2, + kCompressedNo = 3, + kCompressedNuNo = 4, + kSingleton = 5, + kSingletonNu = 6, + kSingletonNo = 7, + kSingletonNuNo = 8, }; //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Bindings/Python/DialectSparseTensor.cpp b/mlir/lib/Bindings/Python/DialectSparseTensor.cpp --- a/mlir/lib/Bindings/Python/DialectSparseTensor.cpp +++ b/mlir/lib/Bindings/Python/DialectSparseTensor.cpp @@ -18,7 +18,14 @@ static void populateDialectSparseTensorSubmodule(const py::module &m) { py::enum_(m, "DimLevelType", py::module_local()) .value("dense", MLIR_SPARSE_TENSOR_DIM_LEVEL_DENSE) - .value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED); + .value("compressed", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED) + .value("compressed-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU) + .value("compressed-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO) + .value("compressed-nu-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO) + .value("singleton", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON) + .value("singleton-nu", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU) + .value("singleton-no", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO) + .value("singleton-nuno", MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO); mlir_attribute_subclass(m, "EncodingAttr", mlirAttributeIsASparseTensorEncodingAttr) diff --git a/mlir/lib/CAPI/Dialect/SparseTensor.cpp b/mlir/lib/CAPI/Dialect/SparseTensor.cpp --- a/mlir/lib/CAPI/Dialect/SparseTensor.cpp +++ b/mlir/lib/CAPI/Dialect/SparseTensor.cpp @@ -25,7 +25,28 @@ static_cast(SparseTensorEncodingAttr::DimLevelType::Dense) && static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED) == static_cast( - SparseTensorEncodingAttr::DimLevelType::Compressed), + SparseTensorEncodingAttr::DimLevelType::Compressed) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::CompressedNu) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NO) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::CompressedNo) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_COMPRESSED_NU_NO) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::CompressedNuNo) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::Singleton) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::SingletonNu) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NO) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::SingletonNo) && + static_cast(MLIR_SPARSE_TENSOR_DIM_LEVEL_SINGLETON_NU_NO) == + static_cast( + SparseTensorEncodingAttr::DimLevelType::SingletonNuNo), "MlirSparseTensorDimLevelType (C-API) and DimLevelType (C++) mismatch"); bool mlirAttributeIsASparseTensorEncodingAttr(MlirAttribute attr) { diff --git a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp --- a/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp +++ b/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp @@ -72,6 +72,20 @@ dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Dense); } else if (strVal == "compressed") { dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Compressed); + } else if (strVal == "compressed-nu") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::CompressedNu); + } else if (strVal == "compressed-no") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::CompressedNo); + } else if (strVal == "compressed-nu-no") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::CompressedNuNo); + } else if (strVal == "singleton") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::Singleton); + } else if (strVal == "singleton-nu") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::SingletonNu); + } else if (strVal == "singleton-no") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::SingletonNo); + } else if (strVal == "singleton-nu-no") { + dlt.push_back(SparseTensorEncodingAttr::DimLevelType::SingletonNuNo); } else { parser.emitError(parser.getNameLoc(), "unexpected dimension level type: ") @@ -125,6 +139,27 @@ case DimLevelType::Compressed: printer << "\"compressed\""; break; + case DimLevelType::CompressedNu: + printer << "\"compressed-nu\""; + break; + case DimLevelType::CompressedNo: + printer << "\"compressed-no\""; + break; + case DimLevelType::CompressedNuNo: + printer << "\"compressed-nu-no\""; + break; + case DimLevelType::Singleton: + printer << "\"singleton\""; + break; + case DimLevelType::SingletonNu: + printer << "\"singleton-nu\""; + break; + case DimLevelType::SingletonNo: + printer << "\"singleton-no\""; + break; + case DimLevelType::SingletonNuNo: + printer << "\"singleton-nu-no\""; + break; } if (i != e - 1) printer << ", "; diff --git a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp --- a/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp +++ b/mlir/lib/Dialect/SparseTensor/Transforms/CodegenUtils.cpp @@ -148,6 +148,20 @@ return DimLevelType::kDense; case SparseTensorEncodingAttr::DimLevelType::Compressed: return DimLevelType::kCompressed; + case SparseTensorEncodingAttr::DimLevelType::CompressedNu: + return DimLevelType::kCompressedNu; + case SparseTensorEncodingAttr::DimLevelType::CompressedNo: + return DimLevelType::kCompressedNo; + case SparseTensorEncodingAttr::DimLevelType::CompressedNuNo: + return DimLevelType::kCompressedNuNo; + case SparseTensorEncodingAttr::DimLevelType::Singleton: + return DimLevelType::kSingleton; + case SparseTensorEncodingAttr::DimLevelType::SingletonNu: + return DimLevelType::kSingletonNu; + case SparseTensorEncodingAttr::DimLevelType::SingletonNo: + return DimLevelType::kSingletonNo; + case SparseTensorEncodingAttr::DimLevelType::SingletonNuNo: + return DimLevelType::kSingletonNuNo; } llvm_unreachable("Unknown SparseTensorEncodingAttr::DimLevelType"); } diff --git a/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir b/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir --- a/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir +++ b/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir @@ -42,3 +42,23 @@ // CHECK-LABEL: func private @sparse_dcsc( // CHECK-SAME: tensor (d1, d0)>, indexBitWidth = 64 }>>) func.func private @sparse_dcsc(tensor) + +// ----- + +#COO = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed-nu-no", "singleton-no" ] +}> + +// CHECK-LABEL: func private @sparse_coo( +// CHECK-SAME: tensor>) +func.func private @sparse_coo(tensor) + +// ----- + +#SortedCOO = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed-nu", "singleton" ] +}> + +// CHECK-LABEL: func private @sparse_sorted_coo( +// CHECK-SAME: tensor<10x10xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu", "singleton" ] }>>) +func.func private @sparse_sorted_coo(tensor<10x10xf64, #SortedCOO>)