diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td --- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td +++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgOps.td @@ -138,290 +138,6 @@ let hasVerifier = 1; } -def Linalg_TiledLoopOp : Linalg_Op<"tiled_loop", [ - AttrSizedOperandSegments, - DeclareOpInterfaceMethods, - RecursiveSideEffects, - SingleBlockImplicitTerminator<"linalg::YieldOp"> - ]> { - let summary = "Linalg tiled loop operation"; - let description = [{ - This is a loop-like operation with additional properties. The arguments - also include the input and the output tensors or memrefs and the attributes - to specify the iterator types. - - Parsing TiledLoopOp will set all elements of the `iterator_types` attribute - to "parallel" type, when it is absent from the custom format. - - Tensor-based version: - - The body region of the loop contains `extract_slice` operations applied to - every tensor argument of TiledLoopOp. - - The body region must contain exactly one block that terminates with - `linalg.yield` with the operands resulting from `insert_slice` operations. - - Example: - - ```mlir - %0 = linalg.tiled_loop (%i) = (%c0) to (%c24) step (%c4) - ins(%lhs, %rhs : tensor<24x64xi8>, tensor<24x64xi8>) - outs(%out : tensor<24x64xi8>) - iterators("parallel") - distribution("block_x") { - %lhs_sub = tensor.extract_slice %lhs[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - %rhs_sub = tensor.extract_slice %rhs[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - %out_sub = tensor.extract_slice %out[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - - %result_sub = linalg.generic ... - - %result = tensor.insert_slice %result_sub into %out[%i, 0][%c4, %c64][1, 1] - : tensor into tensor<24x64xi8> - linalg.yield %result : tensor<24x64xi8> - } - ``` - - MemRef-based version: - - The body region of the loop contains `subview` operations applied to - every memref argument of TiledLoopOp. - - The body region must contain exactly one block that terminates with - `linalg.yield` with no operands. - - Example: - - ```mlir - linalg.tiled_loop (%i) = (%c0) to (%c24) step (%c4) - ins(%lhs, %rhs : memref<24x64xi8>, memref<24x64xi8>) - outs(%out : memref<24x64xi8>) - iterators("parallel") - distribution("block_x") { - %lhs_sub = subview %lhs[%i, 0] [%c4, %c64] [1, 1] - : memref<24x64xi8> to memref - %rhs_sub = subview %rhs[%i, 0] [%c4, %c64] [1, 1] - : memref<24x64xi8> to memref - %out_sub = subview %out[%i, 0] [%c4, %c64] [1, 1] - : memref<24x64xi8> to memref - - %result_sub = linalg.generic ... - linalg.yield - } - ``` - }]; - - let arguments = (ins Variadic:$lowerBound, - Variadic:$upperBound, - Variadic:$step, - Variadic:$inputs, - Variadic:$outputs, - ArrayAttr:$iterator_types, - OptionalAttr:$distribution_types); - let results = (outs Variadic:$results); - let regions = (region SizedRegion<1>:$region); - - let builders = [ - OpBuilder<(ins "ValueRange":$lowerBounds, "ValueRange":$upperBounds, - "ValueRange":$steps, "ValueRange":$inputs, "ValueRange":$outputs, - "ArrayAttr":$iteratorTypes, "Optional":$distributionTypes, - CArg<"function_ref", - "nullptr">:$bodyBuilderFn)>, - OpBuilder<(ins "ValueRange":$lowerBounds, "ValueRange":$upperBounds, - "ValueRange":$steps, "ValueRange":$inputs, "ValueRange":$outputs, - "ArrayAttr":$iteratorTypes, - CArg<"function_ref", - "nullptr">:$bodyBuilderFn)>, - ]; - - let extraClassDeclaration = [{ - /// Number of loops - unsigned getNumLoops() { return step().size(); } - - /// Number of input operands - unsigned getNumInputs() { return inputs().size(); } - - /// Number of output operands - unsigned getNumOutputs() { return outputs().size(); } - - /// Number of operands controlling the loop: lbs, ubs, steps - unsigned getNumControlOperands() { return 3 * getNumLoops(); } - - ValueRange getInductionVars() { - return getBody()->getArguments().take_front(getNumLoops()); - } - ValueRange getRegionInputArgs() { - return getBody()->getArguments().slice(getNumLoops(), inputs().size()); - } - ValueRange getRegionOutputArgs() { - return getBody()->getArguments().take_back(outputs().size()); - } - - void setDistributionTypes(Builder& b, ArrayRef types) { - assert(types.size() == getNumLoops() && - "expected distribution type for every dimension"); - distribution_typesAttr(b.getStrArrayAttr(types)); - } - - void setLowerBounds(ValueRange lowerBounds) { - unsigned numLoops = getNumLoops(); - assert(lowerBounds.size() == numLoops && - "expected lower bounds for every loop dimension"); - for (unsigned i = 0; i < numLoops; ++i) - setOperand(i, lowerBounds[i]); - } - - void setUpperBounds(ValueRange upperBounds) { - unsigned numLoops = getNumLoops(); - assert(upperBounds.size() == numLoops && - "expected upper bounds for every loop dimension"); - for (unsigned i = 0, pos = numLoops; i < numLoops; ++i, ++pos) - setOperand(pos, upperBounds[i]); - } - - void setSteps(ValueRange steps) { - unsigned numLoops = getNumLoops(); - assert(steps.size() == numLoops && - "expected upper bounds for every loop dimension"); - for (unsigned i = 0, pos = 2 * numLoops; i < numLoops; ++i, ++pos) - setOperand(pos, steps[i]); - } - - /// Operand that corresponds to the `bbArg` block argument. - OpOperand& getTiedOperand(BlockArgument& bbArg) { - return getOperation()->getOpOperand(getNumControlOperands() + - bbArg.getArgNumber() - getNumLoops()); - } - - /// Block argument that corresponds to the `input` or `output` operand. - BlockArgument getTiedBlockArgument(OpOperand& operand) { - auto operandIndex = operand.getOperandNumber(); - assert( - operandIndex >= getNumControlOperands() && - operandIndex < getNumOperands() && - "tied block arg is defined only for `input` and `output` arguments"); - return getBody()->getArgument(operandIndex - 2 * getNumLoops()); - } - - /// Result that corresponds to the `outputs` argument of tensor type. - OpResult getTiedOpResult(OpOperand& opOperand) { - // No result can correspond to a memref argument. - if (opOperand.get().getType().isa()) return OpResult(); - - // Check whether the operand index is in bounds of `outputs()` arg. - int operandIndex = opOperand.getOperandNumber(); - int outputIndexStart = - getNumControlOperands() + inputs().size(); - int outputIndexEnd = outputIndexStart + outputs().size(); - if (operandIndex < outputIndexStart || operandIndex >= outputIndexEnd) - return OpResult(); - - // Count tensor arguments in `outputs` to compute the result index. - int tensorId = -1; - for (int i = outputIndexStart; i <= operandIndex; ++i) - tensorId += getOperand(i).getType().isa(); - return getOperation()->getResult(tensorId); - } - - /// Append `operand` to the `input` arguments. - OpOperand& appendInputOperand(OpBuilder& builder, Value operand) { - int numLoops = getNumLoops(); - int numInputs = getNumInputs(); - int numOutputs = getNumOutputs(); - - getOperation()->insertOperands(getNumControlOperands() + numInputs, - operand); - getBody()->insertArgument(numLoops + numInputs, operand.getType(), - getLoc()); - getOperation()->setAttr( - TiledLoopOp::getOperandSegmentSizeAttr(), - builder.getI32VectorAttr( - {numLoops, numLoops, numLoops, numInputs + 1, numOutputs})); - return getOperation()->getOpOperand(getNumControlOperands() + numInputs); - } - - /// Append `operand` to the `output` arguments. - OpOperand& appendOutputOperand(OpBuilder& builder, Value operand) { - int numLoops = getNumLoops(); - int numInputs = getNumInputs(); - int numOutputs = getNumOutputs(); - - getOperation()->insertOperands( - getNumControlOperands() + numInputs + numOutputs, operand); - getBody()->insertArgument(numLoops + numInputs + numOutputs, - operand.getType(), getLoc()); - getOperation()->setAttr( - TiledLoopOp::getOperandSegmentSizeAttr(), - builder.getI32VectorAttr( - {numLoops, numLoops, numLoops, numInputs, numOutputs + 1})); - return getOperation()->getOpOperand(getNumControlOperands() + numInputs + - numOutputs); - } - - /// Erase `operand` from the `input` or `output` arguments. - void eraseOperand(OpBuilder& builder, OpOperand& operand) { - int numInputs = getNumInputs(); - int numLoops = getNumLoops(); - int numOutputs = getNumOutputs(); - int numControlOperands = getNumControlOperands(); - - int operandIndex = operand.getOperandNumber(); - assert(operandIndex >= numControlOperands && - operandIndex < static_cast(getNumOperands()) && - "Can erase only `input` or `output` operand"); - - if (operandIndex >= numControlOperands + numInputs) - --numOutputs; - else - --numInputs; - - getOperation()->eraseOperand(operandIndex); - getBody()->eraseArgument(operandIndex - 2 * numLoops); - getOperation()->setAttr( - TiledLoopOp::getOperandSegmentSizeAttr(), - builder.getI32VectorAttr( - {numLoops, numLoops, numLoops, numInputs, numOutputs})); - } - - OpOperand* findInputOperand(Value value) { - OperandRange::iterator it = llvm::find(inputs(), value); - if (it == inputs().end()) return nullptr; - return it.getBase(); - } - - OpOperand* findOutputOperand(Value value) { - OperandRange::iterator it = llvm::find(outputs(), value); - if (it == outputs().end()) return nullptr; - return it.getBase(); - } - - /// Return whether the op has only MemRef input and outputs. - bool hasBufferSemantics() { - Operation* op = this->getOperation(); - return op->getNumResults() == 0 && - llvm::all_of(op->getOpOperands(), [&](OpOperand & operand) { - return !operand.get().getType().template isa() || - operand.get().getType().template isa(); - }); - } - - /// Return whether the loop dimension is parallel or not. - bool isParallelDimension(unsigned dim) { - StringAttr attr = this->iterator_types()[dim].cast(); - return attr.getValue() == getParallelIteratorTypeName(); - } - }]; - - let hasCanonicalizer = 1; - let hasCustomAssemblyFormat = 1; - let hasFolder = 1; - let hasVerifier = 1; -} - def Linalg_IndexOp : Linalg_Op<"index", [NoSideEffect]>, Arguments<(ins Confined]>:$dim)>, Results<(outs Index:$result)> { diff --git a/mlir/include/mlir/Dialect/Linalg/Passes.h b/mlir/include/mlir/Dialect/Linalg/Passes.h --- a/mlir/include/mlir/Dialect/Linalg/Passes.h +++ b/mlir/include/mlir/Dialect/Linalg/Passes.h @@ -31,10 +31,10 @@ std::unique_ptr createLinalgNamedOpConversionPass(); -std::unique_ptr> createLinalgTilingPass( - ArrayRef tileSizes = {}, - linalg::LinalgTilingLoopType loopType = linalg::LinalgTilingLoopType::Loops, - ArrayRef distributionTypes = {}); +std::unique_ptr> +createLinalgTilingPass(ArrayRef tileSizes = {}, + linalg::LinalgTilingLoopType loopType = + linalg::LinalgTilingLoopType::Loops); std::unique_ptr> createLinalgPromotionPass(bool dynamicBuffers, bool useAlloca); @@ -42,10 +42,6 @@ std::unique_ptr> createLinalgInlineScalarOperandsPass(); -/// Create a pass to convert Linalg tiled loops to `scf.for` and `scf.parallel` -/// loops and memref.load/memref.store accesses. -std::unique_ptr> createConvertLinalgTiledLoopsToSCFPass(); - /// Create a pass to convert Linalg operations to scf.for loops and /// memref.load/memref.store accesses. std::unique_ptr> createConvertLinalgToLoopsPass(); diff --git a/mlir/include/mlir/Dialect/Linalg/Passes.td b/mlir/include/mlir/Dialect/Linalg/Passes.td --- a/mlir/include/mlir/Dialect/Linalg/Passes.td +++ b/mlir/include/mlir/Dialect/Linalg/Passes.td @@ -117,17 +117,6 @@ let dependentDialects = ["linalg::LinalgDialect", "tensor::TensorDialect"]; } -def LinalgLowerTiledLoopsToSCF - : Pass<"convert-linalg-tiled-loops-to-scf", "FuncOp"> { - let summary = "Lower linalg tiled loops to SCF loops and parallel loops"; - let constructor = "mlir::createConvertLinalgTiledLoopsToSCFPass()"; - let dependentDialects = [ - "linalg::LinalgDialect", - "scf::SCFDialect", - "AffineDialect" - ]; -} - def LinalgInlineScalarOperands : Pass<"linalg-inline-scalar-operands", "FuncOp"> { let summary = "Inline scalar operands into linalg generic ops"; let constructor = "mlir::createLinalgInlineScalarOperandsPass()"; @@ -203,12 +192,7 @@ ListOption<"tileSizes", "tile-sizes", "int64_t", "Tile sizes", "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated">, Option<"loopType", "loop-type", "std::string", /*default=*/"\"for\"", - "Specify the type of loops to generate: for, parallel or " - "tiled_loop">, - ListOption<"distributionTypes", "distribution-types", "std::string", - "DistributionTypes (if loop-type=tiled_loop)", - "llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated"> - + "Specify the type of loops to generate: for, parallel"> ]; } diff --git a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h --- a/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h +++ b/mlir/include/mlir/Dialect/Linalg/Transforms/Transforms.h @@ -115,9 +115,6 @@ /// Patterns that are used to inline constant operands into linalg generic ops. void populateInlineConstantOperandsPatterns(RewritePatternSet &patterns); -/// Pattern to convert TiledLoopOp to SCF loops. -void populateTiledLoopToSCFPattern(RewritePatternSet &patterns); - /// Options that control fusion of elementwise operations. struct LinalgElementwiseFusionOptions { /// Enable fusion of reshapes into the shape with elementwise operations. By @@ -1218,13 +1215,6 @@ const LinalgTransformationFilter &filter = LinalgTransformationFilter(), PatternBenefit benefit = 1); -/// Linalg distribution patterns -// -/// Populates `patterns` with patterns to distribute linalg.tiled_loop. -void populateLinalgDistributeTiledLoopPattern( - RewritePatternSet &patterns, const LinalgLoopDistributionOptions &opts, - const LinalgTransformationFilter &marker); - //===----------------------------------------------------------------------===// // Op-specific patterns. //===----------------------------------------------------------------------===// @@ -1338,31 +1328,6 @@ PatternRewriter &rewriter) const override; }; -/// Rewrite a TiledLoopOp with bounds/step that potentially do not divide evenly -/// into a TiledLoopOp where the step divides the iteration space evenly, -/// followed by another TiledLoopOp for the last (partial) iteration (if any). -/// This transformation is called "loop peeling". -/// -/// This function peels the `idx`-th loop of the TiledLoopOp. To tile all loops -/// in the loop nest, this function must be called multiple times. -/// -/// After loop peeling, this function tries to simplify/canonicalize affine.min -/// and affine.max ops in the body of the two TiledLoopOps. For more details, -/// refer to `mlir::scf::peelAndCanonicalizeForLoop`. -/// -/// The return value indicates whether the loop was rewritten or not. Loops are -/// not rewritten if: -/// * Loop step size is 1 or -/// * Loop bounds and step size are static, and step already divides the -/// iteration space evenly. -/// -/// Note: This function rewrites the given TiledLoopOp in-place and clones the -/// TileLoopOp operation for the last iteration. It replaces all uses of the -/// unpeeled TiledLoopOp with the results of the newly generated TiledLoopOp. -LogicalResult peelAndCanonicalizeTiledLoop(RewriterBase &rewriter, - TiledLoopOp loopOp, int64_t idx, - TiledLoopOp &result); - //===----------------------------------------------------------------------===// // Support for staged pattern application. //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/LinalgInterfaceImpl.cpp b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/LinalgInterfaceImpl.cpp --- a/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/LinalgInterfaceImpl.cpp +++ b/mlir/lib/Dialect/Linalg/ComprehensiveBufferize/LinalgInterfaceImpl.cpp @@ -234,203 +234,6 @@ } }; -/// Bufferization of linalg.tiled_loop. Replace with a new linalg.tiled_loop -/// that operates entirely on memrefs. -struct TiledLoopOpInterface - : public BufferizableOpInterface::ExternalModel { - bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - auto tiledLoopOp = cast(op); - - // linalg.tiled_loop operands alone do not bufferize to a memory read, but - // one of the uses of their matching bbArgs may. - return state.isValueRead(tiledLoopOp.getTiedBlockArgument(opOperand)); - } - - bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - auto bufferizableOp = cast(op); - - // Only operands with an aliasing OpResult (i.e., output operands) bufferize - // to a memory write. - return !bufferizableOp.getAliasingOpResult(opOperand, state).empty(); - } - - SmallVector - getAliasingOpResult(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - auto tiledLoopOp = cast(op); - - // Output operands are tied to their corresponding OpResults. - OpResult opResult = tiledLoopOp.getTiedOpResult(opOperand); - if (!opResult) - return {}; - return {opResult}; - } - - BufferRelation bufferRelation(Operation *op, OpResult opResult, - const BufferizationState &state) const { - return BufferRelation::Equivalent; - } - - bool isWritable(Operation *op, Value value, - const BufferizationState &state) const { - // Interestingly, linalg::TiledLoopOp's bbArgs can **always** be viewed - // inplace from the perspective of nested ops: - // 1. Either the matching iter operand is not bufferized inplace and an - // alloc + optional copy makes the bbArg itself inplaceable. - // 2. Or the matching iter operand is bufferized inplace and bbArg just - // bufferizes to that too. - return true; - } - - bool isAllocationHoistingBarrier(Operation *op) const { return true; } - - LogicalResult bufferize(Operation *op, RewriterBase &rewriter, - const BufferizationState &state) const { - auto tiledLoopOp = cast(op); - - // Compute new inputs, outputs and results. - SmallVector newInputs, newOutputs, newResults; - for (unsigned i = tiledLoopOp.getNumControlOperands(); - i < tiledLoopOp->getNumOperands(); ++i) { - OpOperand &operand = tiledLoopOp->getOpOperand(i); - Value rewrittenValue = operand.get(); - if (rewrittenValue.getType().isa()) { - FailureOr bufferOrFailure = state.getBuffer(rewriter, operand); - if (failed(bufferOrFailure)) - return failure(); - rewrittenValue = *bufferOrFailure; - } - if (i < - tiledLoopOp.getNumControlOperands() + tiledLoopOp.getNumInputs()) { - newInputs.push_back(rewrittenValue); - } else { - newOutputs.push_back(rewrittenValue); - if (operand.get().getType().isa()) - newResults.push_back(rewrittenValue); - } - } - - // Create new TiledLoopOp. - auto newTiledLoopOp = rewriter.create( - tiledLoopOp.getLoc(), tiledLoopOp.lowerBound(), - tiledLoopOp.upperBound(), tiledLoopOp.step(), newInputs, newOutputs, - tiledLoopOp.iterator_types(), tiledLoopOp.distribution_types()); - - // Remove terminator. - if (!newTiledLoopOp.getBody()->empty()) - rewriter.eraseOp(tiledLoopOp.getBody()->getTerminator()); - - // Compute new loop body arguments. - SmallVector newBlockArgs, newRegionInOutArgs, oldRegionInOutArgs; - ValueRange newInductionVars = newTiledLoopOp.getInductionVars(); - newBlockArgs.append(newInductionVars.begin(), newInductionVars.end()); - - ValueRange newRegionInArgs = newTiledLoopOp.getRegionInputArgs(); - ValueRange newRegionOutArgs = newTiledLoopOp.getRegionOutputArgs(); - newRegionInOutArgs.append(newRegionInArgs.begin(), newRegionInArgs.end()); - newRegionInOutArgs.append(newRegionOutArgs.begin(), newRegionOutArgs.end()); - - ValueRange oldRegionInArgs = tiledLoopOp.getRegionInputArgs(); - ValueRange oldRegionOutArgs = tiledLoopOp.getRegionOutputArgs(); - oldRegionInOutArgs.append(oldRegionInArgs.begin(), oldRegionInArgs.end()); - oldRegionInOutArgs.append(oldRegionOutArgs.begin(), oldRegionOutArgs.end()); - assert(newRegionInArgs.size() == oldRegionInArgs.size() && - "expected same number of input args"); - assert(newRegionOutArgs.size() == oldRegionOutArgs.size() && - "expected same number of output args"); - - for (auto it : llvm::zip(oldRegionInOutArgs, newRegionInOutArgs)) { - Value oldArg = std::get<0>(it); - Value newArg = std::get<1>(it); - rewriter.setInsertionPointToStart(newTiledLoopOp.getBody()); - if (oldArg.getType().isa()) { - newBlockArgs.push_back(rewriter.create( - oldArg.getLoc(), newArg)); - } else { - newBlockArgs.push_back(newArg); - } - } - - // Move old body into new loop. - rewriter.mergeBlocks(tiledLoopOp.getBody(), newTiledLoopOp.getBody(), - newBlockArgs); - - // Replace previous terminator with a new one that does not yield anything. - auto oldTerminator = - cast(newTiledLoopOp.getBody()->getTerminator()); - rewriter.setInsertionPointToEnd(newTiledLoopOp.getBody()); - auto newTerminator = - rewriter.create(oldTerminator->getLoc()); - - // Copy buffer of yielded tensor to output buffer. If everything bufferized - // inplace, this copy will fold away. - rewriter.setInsertionPoint(newTerminator); - for (auto it : llvm::zip(oldTerminator.values(), newOutputs)) { - Value output = std::get<1>(it); - Value toMemrefOp = rewriter.create( - newTerminator.getLoc(), output.getType(), std::get<0>(it)); - if (failed(createMemCpy(rewriter, newTerminator.getLoc(), toMemrefOp, - output, state.getOptions()))) - return failure(); - } - - // Erase old terminator. - rewriter.eraseOp(oldTerminator); - - // Replace results and delete old op. - replaceOpWithBufferizedValues(rewriter, op, newResults); - - return success(); - } -}; - -/// Bufferization of linalg.yield. Bufferized as part of linalg.tiled_loop's -/// bufferization. -struct YieldOpInterface - : public BufferizableOpInterface::ExternalModel { - bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - return true; - } - - bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - return false; - } - - SmallVector - getAliasingOpResult(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - return {}; - } - - bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand, - const BufferizationState &state) const { - // Yield operands always bufferize inplace. Otherwise, an alloc + copy - // may be generated inside the block. We should not return/yield allocations - // when possible. - return true; - } - - LogicalResult bufferize(Operation *op, RewriterBase &rewriter, - const BufferizationState &state) const { - auto yieldOp = cast(op); - - if (!yieldOp->getParentOfType()) - return yieldOp->emitError( - "expected that linalg.yield terminates a tiled_loop"); - - assert(yieldOp->getOpOperands().empty() && - "expected that linalg.yield was bufferized together with" - " tiled_loop"); - return success(); - } -}; - /// Helper structure that iterates over all LinalgOps in `OpTys` and registers /// the `BufferizableOpInterface` with each of them. template @@ -691,8 +494,6 @@ void mlir::linalg::comprehensive_bufferize::linalg_ext:: registerBufferizableOpInterfaceExternalModels(DialectRegistry ®istry) { registry.addOpInterface(); - registry.addOpInterface(); - registry.addOpInterface(); // Register all Linalg structured ops. `LinalgOp` is an interface and it is // not possible to attach an external interface to an existing interface. diff --git a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp --- a/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp +++ b/mlir/lib/Dialect/Linalg/IR/LinalgOps.cpp @@ -105,44 +105,6 @@ return success(folded); } -/// This is a specialization of `foldMemRefCast` used for patterns of the form -/// ``` -/// tiled_loop(memrefcast(%src)) -> tiled_loop(%src) -/// ``` -/// It folds the source of the memref.cast into the root operation directly. -static LogicalResult foldMemRefCastInTiledLoopOp(TiledLoopOp op) { - bool folded = false; - Location loc = op->getLoc(); - - Block *body = op.getBody(); - OpBuilder b = OpBuilder::atBlockBegin(body); - - // Update `input` and `output` operands and block arguments if necessary. - // Operands list: [lbs, ubs, steps, inputs, outputs]. - // Block args list: [ivs, inputs, outputs]. - for (size_t operandIndex = op.getNumControlOperands(), - bbArgIndex = op.getNumLoops(), e = op.getNumOperands(); - operandIndex < e; ++operandIndex, ++bbArgIndex) { - OpOperand &operand = op->getOpOperand(operandIndex); - - auto castOp = operand.get().getDefiningOp(); - if (castOp && memref::CastOp::canFoldIntoConsumerOp(castOp)) { - operand.set(castOp.getOperand()); - BlockArgument newBbArg = body->insertArgument( - bbArgIndex, castOp.getOperand().getType(), op.getLoc()); - BlockArgument oldBbArg = body->getArgument(newBbArg.getArgNumber() + 1); - - // Insert memref.cast back to the original type. - oldBbArg.replaceAllUsesWith( - b.create(loc, oldBbArg.getType(), newBbArg)); - body->eraseArgument(oldBbArg.getArgNumber()); - - folded = true; - } - } - return success(folded); -} - //===----------------------------------------------------------------------===// // Region builder helper. // TODO: Move this to a utility library. @@ -1038,630 +1000,9 @@ if (auto linalgOp = dyn_cast(parentOp)) return verifyYield(*this, cast(parentOp)); - if (auto tiledLoopOp = dyn_cast(parentOp)) { - // Check if output args with tensor types match results types. - SmallVector tensorOuts; - llvm::copy_if( - tiledLoopOp.outputs(), std::back_inserter(tensorOuts), - [&](Value out) { return out.getType().isa(); }); - if (tensorOuts.size() != values().size()) - return emitOpError("expected number of tensor output args = ") - << tensorOuts.size() - << " to match the number of yield operands = " << values().size(); - - TypeRange tensorTypes(llvm::makeArrayRef(tensorOuts)); - for (auto &item : - llvm::enumerate(llvm::zip(tensorTypes, getOperandTypes()))) { - Type outType, resultType; - unsigned index = item.index(); - std::tie(outType, resultType) = item.value(); - if (outType != resultType) - return emitOpError("expected yield operand ") - << index << " with type = " << resultType - << " to match output arg type = " << outType; - } - return success(); - } return emitOpError("expected parent op with LinalgOp interface"); } -//===----------------------------------------------------------------------===// -// TiledLoopOp -//===----------------------------------------------------------------------===// - -void TiledLoopOp::build(OpBuilder &builder, OperationState &result, - ValueRange lowerBounds, ValueRange upperBounds, - ValueRange steps, ValueRange inputs, ValueRange outputs, - ArrayAttr iteratorTypes, - function_ref - bodyBuilderFn) { - build(builder, result, lowerBounds, upperBounds, steps, inputs, outputs, - iteratorTypes, llvm::None, bodyBuilderFn); -} - -void TiledLoopOp::build(OpBuilder &builder, OperationState &result, - ValueRange lowerBounds, ValueRange upperBounds, - ValueRange steps, ValueRange inputs, ValueRange outputs, - ArrayAttr iteratorTypes, - Optional distributionTypes, - function_ref - bodyBuilderFn) { - result.addOperands(lowerBounds); - result.addOperands(upperBounds); - result.addOperands(steps); - result.addOperands(inputs); - result.addOperands(outputs); - result.addAttribute( - TiledLoopOp::getOperandSegmentSizeAttr(), - builder.getI32VectorAttr({static_cast(lowerBounds.size()), - static_cast(upperBounds.size()), - static_cast(steps.size()), - static_cast(inputs.size()), - static_cast(outputs.size())})); - result.addAttribute(getIteratorTypesAttrName(), iteratorTypes); - - if (distributionTypes.hasValue()) - result.addAttribute(getDistributionTypesAttrName(), - distributionTypes.getValue()); - - // Add output types for `RankedTensorType` output arguments. - for (Value output : outputs) { - Type outputType = output.getType(); - if (outputType.isa()) - result.addTypes(outputType); - } - - OpBuilder::InsertionGuard guard(builder); - unsigned numIVs = steps.size(); - SmallVector argTypes(numIVs, builder.getIndexType()); - SmallVector argLocs(numIVs, result.location); - for (Value input : inputs) { - argTypes.push_back(input.getType()); - argLocs.push_back(input.getLoc()); - } - for (Value output : outputs) { - argTypes.push_back(output.getType()); - argLocs.push_back(output.getLoc()); - } - Region *bodyRegion = result.addRegion(); - Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes, argLocs); - - if (bodyBuilderFn) { - builder.setInsertionPointToStart(bodyBlock); - bodyBuilderFn(builder, result.location, - bodyBlock->getArguments().take_front(numIVs), - bodyBlock->getArguments().slice(numIVs, inputs.size()), - bodyBlock->getArguments().take_back(outputs.size())); - TiledLoopOp::ensureTerminator(*bodyRegion, builder, result.location); - } -} - -void TiledLoopOp::print(OpAsmPrinter &p) { - p << " (" << getInductionVars() << ") = (" << lowerBound() << ") to (" - << upperBound() << ") step (" << step() << ")"; - - if (!inputs().empty()) { - p << " ins ("; - llvm::interleaveComma(llvm::zip(getRegionInputArgs(), inputs()), p, - [&](auto it) { - p << std::get<0>(it) << " = " << std::get<1>(it) - << ": " << std::get<1>(it).getType(); - }); - p << ")"; - } - if (!outputs().empty()) { - p << " outs ("; - llvm::interleaveComma(llvm::zip(getRegionOutputArgs(), outputs()), p, - [&](auto it) { - p << std::get<0>(it) << " = " << std::get<1>(it) - << ": " << std::get<1>(it).getType(); - }); - p << ")"; - } - - if (llvm::any_of(iterator_types(), [](Attribute attr) { - return attr.cast().getValue() != - getParallelIteratorTypeName(); - })) - p << " iterators" << iterator_types(); - - if (distribution_types().hasValue()) - p << " distribution" << distribution_types().getValue(); - - p << ' '; - p.printRegion(region(), /*printEntryBlockArgs=*/false); - p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ - TiledLoopOp::getOperandSegmentSizeAttr(), - getIteratorTypesAttrName(), - getDistributionTypesAttrName()}); -} - -ParseResult TiledLoopOp::parse(OpAsmParser &parser, OperationState &result) { - auto &builder = parser.getBuilder(); - // Parse an opening `(` followed by induction variables followed by `)` - SmallVector ivs; - if (parser.parseRegionArgumentList(ivs, /*requiredOperandCount=*/-1, - OpAsmParser::Delimiter::Paren)) - return failure(); - - // Parse loop bounds. - SmallVector lower; - if (parser.parseEqual() || - parser.parseOperandList(lower, ivs.size(), - OpAsmParser::Delimiter::Paren) || - parser.resolveOperands(lower, builder.getIndexType(), result.operands)) - return failure(); - - SmallVector upper; - if (parser.parseKeyword("to") || - parser.parseOperandList(upper, ivs.size(), - OpAsmParser::Delimiter::Paren) || - parser.resolveOperands(upper, builder.getIndexType(), result.operands)) - return failure(); - - // Parse step values. - SmallVector steps; - if (parser.parseKeyword("step") || - parser.parseOperandList(steps, ivs.size(), - OpAsmParser::Delimiter::Paren) || - parser.resolveOperands(steps, builder.getIndexType(), result.operands)) - return failure(); - - // Parse input tensors. - SmallVector inputs, inputRegionArgs; - SmallVector inputTypes; - if (succeeded(parser.parseOptionalKeyword("ins"))) { - SMLoc inputsOperandsLoc = parser.getCurrentLocation(); - - if (parser.parseAssignmentListWithTypes(inputRegionArgs, inputs, - inputTypes)) - return failure(); - - if (parser.resolveOperands(inputs, inputTypes, inputsOperandsLoc, - result.operands)) - return failure(); - } - - // Parse output tensors. - SmallVector outputs, outputRegionArgs; - SmallVector outputTypes; - if (succeeded(parser.parseOptionalKeyword("outs"))) { - SMLoc outputsOperandsLoc = parser.getCurrentLocation(); - - if (parser.parseAssignmentListWithTypes(outputRegionArgs, outputs, - outputTypes)) - return failure(); - - if (parser.resolveOperands(outputs, outputTypes, outputsOperandsLoc, - result.operands)) - return failure(); - for (Type outputType : outputTypes) - if (outputType.isa()) - result.addTypes(outputType); - } - - // Parse attributes. - SmallVector iterTypes, distributionTypes; - auto parseAttr = [&](StringRef keyword, SmallVector *attrs) { - if (succeeded(parser.parseOptionalKeyword(keyword))) { - StringAttr attr; - - if (parser.parseLSquare() || parser.parseAttribute(attr)) - return failure(); - attrs->push_back(attr); - for (int i = 1, e = ivs.size(); i < e; ++i) { - if (parser.parseComma() || parser.parseAttribute(attr)) - return failure(); - attrs->push_back(attr); - } - if (parser.parseRSquare()) - return failure(); - } - return success(); - }; - if (failed(parseAttr("iterators", &iterTypes)) || - failed(parseAttr("distribution", &distributionTypes))) - return failure(); - - // Set all loop iterator types to "parallel" if they are not printed in IR. - if (iterTypes.empty()) { - auto parallelIter = builder.getStringAttr(getParallelIteratorTypeName()); - iterTypes = SmallVector(ivs.size(), parallelIter); - } - result.addAttribute(getIteratorTypesAttrName(), - builder.getArrayAttr(iterTypes)); - if (!distributionTypes.empty()) - result.addAttribute(getDistributionTypesAttrName(), - builder.getArrayAttr(distributionTypes)); - result.addAttribute( - TiledLoopOp::getOperandSegmentSizeAttr(), - builder.getI32VectorAttr({static_cast(lower.size()), - static_cast(upper.size()), - static_cast(steps.size()), - static_cast(inputs.size()), - static_cast(outputs.size())})); - - // Parse the body. - Region *body = result.addRegion(); - - SmallVector regionTypes(ivs.size(), builder.getIndexType()); - regionTypes.append(inputTypes); - regionTypes.append(outputTypes); - - SmallVector regionArgs(ivs); - regionArgs.append(inputRegionArgs); - regionArgs.append(outputRegionArgs); - - if (parser.parseRegion(*body, regionArgs, regionTypes)) - return failure(); - - // Parse optional attributes. - parser.parseOptionalAttrDict(result.attributes); - - return success(); -} - -Region &TiledLoopOp::getLoopBody() { return region(); } - -LogicalResult TiledLoopOp::moveOutOfLoop(ArrayRef ops) { - for (auto *op : ops) - op->moveBefore(*this); - return success(); -} - -bool TiledLoopOp::isDefinedOutsideOfLoop(Value value) { - return !region().isAncestor(value.getParentRegion()); -} - -LogicalResult TiledLoopOp::verify() { - // Check if iterator types are provided for every loop dimension. - if (iterator_types().size() != getNumLoops()) - return emitOpError("expected iterator types array attribute size = ") - << iterator_types().size() - << " to match the number of loops = " << getNumLoops(); - - // Check if types of input arguments match region args types. - for (auto &item : - llvm::enumerate(llvm::zip(inputs(), getRegionInputArgs()))) { - Value input, inputRegionArg; - unsigned index = item.index(); - std::tie(input, inputRegionArg) = item.value(); - if (input.getType() != inputRegionArg.getType()) - return emitOpError("expected input arg ") - << index << " with type = " << input.getType() - << " to match region arg " << index + getNumLoops() - << " type = " << inputRegionArg.getType(); - } - - // Check if types of input arguments match region args types. - for (auto &item : - llvm::enumerate(llvm::zip(outputs(), getRegionOutputArgs()))) { - Value output, outputRegionArg; - unsigned index = item.index(); - std::tie(output, outputRegionArg) = item.value(); - if (output.getType() != outputRegionArg.getType()) - return emitOpError("expected output arg ") - << index << " with type = " << output.getType() - << " to match region arg " - << index + getNumLoops() + inputs().size() - << " type = " << outputRegionArg.getType(); - } - return success(); -} - -namespace { - -static constexpr int64_t kNoMatch = -1; - -// Folds away TiledLoopOp inputs if they have no uses within the body. -// -// Example: -// -// %0 = linalg.tiled_loop ... ins (%in_ = %in: tensor<...>, -// %in_buf_ = %in_buf: memref<...>) {...} -// Becomes -// -// linalg.tiled_loop ... ins (%in_buf_ = %in_buf: memref<...>) {...} -struct TiledLoopInputsFolder : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop, - PatternRewriter &rewriter) const final { - SmallVector newInputs, regionInputTensorArgs; - // Store ids of the corresponding old and new input operands. - SmallVector oldInputIdToNew(tiledLoop.inputs().size(), - kNoMatch); - for (const auto &en : llvm::enumerate( - llvm::zip(tiledLoop.inputs(), tiledLoop.getRegionInputArgs()))) { - Value in, bbArg; - size_t index = en.index(); - std::tie(in, bbArg) = en.value(); - if (!bbArg.use_empty()) { - oldInputIdToNew[index] = newInputs.size(); - newInputs.push_back(in); - } - } - if (newInputs.size() == tiledLoop.inputs().size()) - return failure(); - Location loc = tiledLoop.getLoc(); - auto newTiledLoop = rewriter.create( - loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(), - newInputs, tiledLoop.outputs(), tiledLoop.iterator_types(), - tiledLoop.distribution_types()); - - // Clone the region. - BlockAndValueMapping bvm; - bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars()); - bvm.map(tiledLoop.getRegionOutputArgs(), - newTiledLoop.getRegionOutputArgs()); - for (const auto &en : llvm::enumerate(oldInputIdToNew)) - if (en.value() != kNoMatch) - bvm.map(tiledLoop.getRegionInputArgs()[en.index()], - newTiledLoop.getRegionInputArgs()[en.value()]); - OpBuilder innerBuilder = - OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener()); - for (auto &op : *tiledLoop.getBody()) - innerBuilder.clone(op, bvm); - rewriter.replaceOp(tiledLoop, newTiledLoop.getResults()); - - return success(); - } -}; - -} // namespace - -/// A simple, conservative analysis to determine if the loop is shape -/// conserving. I.e., the type of the arg-th yielded value is the same as the -/// type of the corresponding basic block argument of the loop. -/// Note: This function handles only simple cases. Expand as needed. -static bool isShapePreserving(TiledLoopOp loopOp, int64_t arg) { - auto yieldOp = cast(loopOp.getLoopBody().front().getTerminator()); - if (yieldOp.values().empty()) - // Tiled loop either has no outputs or is a "memref-based version". In - // either case, the loop is shape conserving. - return true; - assert(arg < static_cast(yieldOp.values().size()) && - "arg is out of bounds"); - Value value = yieldOp.values()[arg]; - while (value) { - if (value == loopOp.getRegionOutputArgs()[arg]) - return true; - OpResult opResult = value.dyn_cast(); - if (!opResult) - return false; - - using tensor::InsertSliceOp; - value = llvm::TypeSwitch(opResult.getOwner()) - .template Case( - [&](InsertSliceOp op) { return op.dest(); }) - .template Case([&](TiledLoopOp loopOp) { - return isShapePreserving(loopOp, opResult.getResultNumber()) - ? loopOp.outputs()[opResult.getResultNumber()] - : Value(); - }) - .Default([&](auto op) { return Value(); }); - } - return false; -} - -namespace { - -/// Fold dim(x) where `x` is an input/output argument of a TiledLoopOp block -/// to dim(y) where `y` is the initial input/output value of the argument. -/// -/// E.g.: -/// %y = ... : tensor<...> -/// linalg.tiled_loop ... ins(%x = %y : tensor<...>) { -/// tensor.dim %x, %c0 : tensor<...> -/// } -/// -/// is folded to: -/// %y = ... : tensor<...> -/// linalg.tiled_loop ... ins(%x = %y : tensor<...>) { -/// tensor.dim %y, %c0 : tensor<...> -/// } -/// -/// Note: Dim ops are folded only if it can be proven that the runtime type of -/// the yielded value (in case of outputs) does not change with loop iterations. -template -struct DimOfTiledLoopInsOutsFolder : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(OpTy dimOp, - PatternRewriter &rewriter) const final { - auto src = dimOp.source().template dyn_cast(); - if (!src) - return failure(); - auto loopOp = - dyn_cast(src.getOwner()->getParent()->getParentOp()); - if (!loopOp) - return failure(); - unsigned numLoops = loopOp.getNumLoops(); - unsigned numInputArgs = loopOp.getRegionInputArgs().size(); - if (src.getArgNumber() >= numInputArgs + numLoops && - !isShapePreserving(loopOp, - src.getArgNumber() - numInputArgs - numLoops)) - return failure(); - - auto inputArgs = loopOp.getRegionInputArgs(); - auto it1 = llvm::find(inputArgs, src); - if (it1 != inputArgs.end()) { - rewriter.updateRootInPlace(dimOp, [&] { - dimOp.sourceMutable().assign(loopOp.inputs()[it1 - inputArgs.begin()]); - }); - return success(); - } - - auto outputArgs = loopOp.getRegionOutputArgs(); - auto it2 = llvm::find(outputArgs, src); - if (it2 != outputArgs.end()) { - rewriter.updateRootInPlace(dimOp, [&] { - dimOp.sourceMutable().assign( - loopOp.outputs()[it2 - outputArgs.begin()]); - }); - return success(); - } - - return failure(); - } -}; - -/// Fold dim(r) where `r` is the result of a TiledLoopOp to dim(y) where `y` -/// is the initial output value of the loop. -/// -/// E.g.: -/// %y = ... : tensor<...> -/// %r = linalg.tiled_loop ... outs(%i = %y : tensor<...>) { -/// ... -/// } -/// %0 = tensor.dim %r, %c0 : tensor<...> -/// -/// is folded to: -/// %y = ... : tensor<...> -/// linalg.tiled_loop ... outs(%i = %y : tensor<...>) { -/// ... -/// } -/// %0 = tensor.dim %y, %c0 : tensor<...> -/// -/// Note: Dim ops are folded only if it can be proven that the runtime type of -/// the yielded value (in case of outputs) does not change with loop iterations. -template -struct DimOfTiledLoopResultFolder : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(OpTy dimOp, - PatternRewriter &rewriter) const final { - auto loopOp = dimOp.source().template getDefiningOp(); - if (!loopOp) - return failure(); - auto opResult = dimOp.source().template cast(); - unsigned resultNumber = opResult.getResultNumber(); - if (!isShapePreserving(loopOp, resultNumber)) - return failure(); - rewriter.updateRootInPlace(dimOp, [&]() { - dimOp.sourceMutable().assign(loopOp.outputs()[resultNumber]); - }); - return success(); - } -}; - -// Folds away TiledLoopOp output tensors when the following conditions are met: -// * result of `linalg.tiled_loop` has no uses -// * output tensor is the argument of `linalg.yield` -// -// Example: -// -// %0 = linalg.tiled_loop ... outs (%o_ = %out: tensor<...>, -// %obuf_ = %out_buf: memref<...>) { -// ... -// linalg.yield %o_ : tensor ... -// } -// -// Becomes -// -// linalg.tiled_loop ... outs (%obuf_ = %out_buf: memref<...>) { -// ... -// linalg.yield -// } -struct TiledLoopResultsFolder : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(linalg::TiledLoopOp tiledLoop, - PatternRewriter &rewriter) const final { - if (tiledLoop.getNumResults() == 0) - return failure(); - - Block *block = tiledLoop.getBody(); - auto yieldOp = cast(block->getTerminator()); - - // Match the pattern and collect output buffers that will replace the output - // tensors and also the ops that will be ignored when cloning the body. - SmallVector newOutputOperands, newYieldArgs; - int resultId = 0; - // Store ids of the corresponding old and new output operands. - SmallVector oldOutputIdToNew(tiledLoop.outputs().size(), - kNoMatch); - // Store ids of the corresponding old and new results. - SmallVector oldResultIdToNew(tiledLoop.getNumResults(), - kNoMatch); - SmallVector resultReplacement(tiledLoop.getNumResults()); - for (const auto &en : llvm::enumerate( - llvm::zip(tiledLoop.outputs(), tiledLoop.getRegionOutputArgs()))) { - size_t index = en.index(); - Value out = std::get<0>(en.value()); - Value outRegionArg = std::get<1>(en.value()); - - if (!out.getType().isa()) { - oldOutputIdToNew[index] = newOutputOperands.size(); - newOutputOperands.push_back(out); - continue; - } - Value result = tiledLoop.getResult(resultId); - Value yieldArg = yieldOp.getOperand(resultId); - if (yieldArg != outRegionArg || !result.use_empty()) { - oldOutputIdToNew[index] = newOutputOperands.size(); - oldResultIdToNew[resultId] = newYieldArgs.size(); - resultReplacement[resultId] = out; - newOutputOperands.push_back(out); - newYieldArgs.push_back(yieldArg); - } - ++resultId; - } - if (newOutputOperands.size() == tiledLoop.outputs().size()) - return failure(); - - Location loc = tiledLoop.getLoc(); - auto newTiledLoop = rewriter.create( - loc, tiledLoop.lowerBound(), tiledLoop.upperBound(), tiledLoop.step(), - tiledLoop.inputs(), newOutputOperands, tiledLoop.iterator_types(), - tiledLoop.distribution_types()); - - // Clone the region. - BlockAndValueMapping bvm; - bvm.map(tiledLoop.getInductionVars(), newTiledLoop.getInductionVars()); - bvm.map(tiledLoop.getRegionInputArgs(), newTiledLoop.getRegionInputArgs()); - for (const auto &en : llvm::enumerate(oldOutputIdToNew)) { - if (en.value() != kNoMatch) - bvm.map(tiledLoop.getRegionOutputArgs()[en.index()], - newTiledLoop.getRegionOutputArgs()[en.value()]); - else - bvm.map(tiledLoop.getRegionOutputArgs()[en.index()], - tiledLoop.outputs()[en.index()]); - } - OpBuilder innerBuilder = - OpBuilder::atBlockEnd(newTiledLoop.getBody(), rewriter.getListener()); - for (auto &op : tiledLoop.getBody()->without_terminator()) - innerBuilder.clone(op, bvm); - innerBuilder.create( - loc, llvm::to_vector<2>(llvm::map_range( - newYieldArgs, [&](Value arg) { return bvm.lookup(arg); }))); - - for (const auto &en : llvm::enumerate(oldResultIdToNew)) - if (en.value() != kNoMatch) - resultReplacement[en.index()] = newTiledLoop.getResult(en.value()); - rewriter.replaceOp(tiledLoop, resultReplacement); - - return success(); - } -}; -} // namespace - -void TiledLoopOp::getCanonicalizationPatterns(RewritePatternSet &results, - MLIRContext *context) { - results.insert, - DimOfTiledLoopInsOutsFolder, - DimOfTiledLoopResultFolder, - DimOfTiledLoopResultFolder>(context); -} - -LogicalResult TiledLoopOp::fold(ArrayRef, - SmallVectorImpl &) { - return foldMemRefCastInTiledLoopOp(*this); -} - //===----------------------------------------------------------------------===// // IndexOp //===----------------------------------------------------------------------===// diff --git a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt --- a/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt +++ b/mlir/lib/Dialect/Linalg/Transforms/CMakeLists.txt @@ -3,7 +3,6 @@ CodegenStrategy.cpp ComprehensiveBufferizePass.cpp Detensorize.cpp - Distribution.cpp DropUnitDims.cpp ElementwiseOpFusion.cpp ElementwiseToLinalg.cpp diff --git a/mlir/lib/Dialect/Linalg/Transforms/Distribution.cpp b/mlir/lib/Dialect/Linalg/Transforms/Distribution.cpp deleted file mode 100644 --- a/mlir/lib/Dialect/Linalg/Transforms/Distribution.cpp +++ /dev/null @@ -1,87 +0,0 @@ -//===- Distibution.cpp - linalg named ops to generic ops --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the Linalg distibution pass. It updates `tiled_loop` -// control variables depending on the distribution type. -// -//===----------------------------------------------------------------------===// -// -#include - -#include "mlir/Dialect/Linalg/Transforms/Transforms.h" -#include "mlir/Dialect/Linalg/Utils/Utils.h" -#include "mlir/IR/MLIRContext.h" -#include "mlir/Pass/Pass.h" -#include "mlir/Transforms/DialectConversion.h" - -#define DEBUG_TYPE "linalg-distribution" - -#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") - -using namespace mlir; -using namespace mlir::linalg; - -namespace { - -struct DistributeTiledLoopPattern - : public OpRewritePattern { - DistributeTiledLoopPattern(MLIRContext *context, - LinalgLoopDistributionOptions options, - LinalgTransformationFilter marker) - : OpRewritePattern(context), - options(std::move(options)), marker(std::move(marker)) {} - LogicalResult matchAndRewrite(linalg::TiledLoopOp op, - PatternRewriter &rewriter) const override { - if (failed(marker.checkAndNotify(rewriter, op))) - return failure(); - if (!op.distribution_types().hasValue()) - return failure(); - - Location loc = op.getLoc(); - SmallVector newLowerBounds = op.lowerBound(); - SmallVector newUpperBounds = op.upperBound(); - SmallVector newSteps = op.step(); - - // Update bounds and steps. - auto distributionTypes = op.distribution_types().getValue(); - for (int i = 0, e = op.getNumLoops(); i < e; ++i) { - StringRef type = distributionTypes[i].cast().getValue(); - auto procInfoCallback = options.procInfoMap.find(type); - if (procInfoCallback == options.procInfoMap.end()) - continue; - - if (!isParallelIterator(op.iterator_types()[i])) { - op.emitOpError("only support for parallel loops is implemented"); - return failure(); - } - ProcInfo info = procInfoCallback->second(rewriter, loc); - updateBoundsForCyclicDistribution(rewriter, loc, info.procId, info.nprocs, - newLowerBounds[i], newUpperBounds[i], - newSteps[i]); - } - rewriter.updateRootInPlace(op, [&] { - op.setLowerBounds(newLowerBounds); - op.setUpperBounds(newUpperBounds); - op.setSteps(newSteps); - }); - marker.replaceLinalgTransformationFilter(rewriter, op); - return success(); - } - -private: - LinalgLoopDistributionOptions options; - LinalgTransformationFilter marker; -}; - -} // namespace - -void mlir::linalg::populateLinalgDistributeTiledLoopPattern( - RewritePatternSet &patterns, const LinalgLoopDistributionOptions &opts, - const LinalgTransformationFilter &marker) { - patterns.add(patterns.getContext(), opts, marker); -} diff --git a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Fusion.cpp @@ -104,63 +104,8 @@ llvm_unreachable("Expect to be able to extract a shape defining loop range"); } -// Return tiled operands for the fused producer op. When fusing into -// `linalg.tiled_loop` one has to update `input` and `output` arguments of the -// loop correspondingly. -// Each input tensor of the producer op has to be added to `inputs` of the -// `tiled_loop` if it is not present there already. Each output tensor has to -// be added either to `inputs` or to `outputs` of `linalg.tiled_loop` depending -// on whether the correponding result is an input or an output to the loop. -// -// NOTE: This way of updating the arguments of the `tiled_loop` assumes that the -// intermediate result is not used by any other operation but the consumer. A -// more generic way is to append all missing output tensors of the producer to -// the tiled loop outputs and hence modify the number of the results, since we -// would need to add the intermediate results to `linalg.yield`. After that a -// canonicalization pass would move the unused output args of the `tiled_loop` -// to the `input` section. -static SmallVector getTiledOperands(OpBuilder &b, LinalgOp producer) { - auto tiledLoop = dyn_cast(b.getBlock()->getParentOp()); - if (!tiledLoop) - return producer.getInputAndOutputOperands(); - - SmallVector tiledOperands; - assert(producer.hasTensorSemantics() && - "only fusion on tensors is currently supported for TiledLinalgOp"); - - for (OpOperand *producerInput : producer.getInputOperands()) { - OpOperand *addedInput = tiledLoop.findInputOperand(producerInput->get()); - if (addedInput == nullptr) - addedInput = &tiledLoop.appendInputOperand(b, producerInput->get()); - BlockArgument addedBlockArg = tiledLoop.getTiedBlockArgument(*addedInput); - tiledOperands.push_back(addedBlockArg); - } - for (OpOperand *producerOutput : producer.getOutputOperands()) { - OpResult result = producer.getTiedOpResult(producerOutput); - OpOperand *resultInputOperand = tiledLoop.findInputOperand(result); - OpOperand *resultOutputOperand = tiledLoop.findOutputOperand(result); - assert((resultInputOperand != nullptr) ^ (resultOutputOperand != nullptr) && - "The result should be present in `input` or `output` args of " - "`tiled_loop"); - - bool isInput = resultInputOperand; - int opNumber = isInput ? resultInputOperand->getOperandNumber() - : resultOutputOperand->getOperandNumber(); - - OpOperand *addedOutput = tiledLoop.findOutputOperand(producerOutput->get()); - if (addedOutput == nullptr) - addedOutput = - isInput ? &tiledLoop.appendInputOperand(b, producerOutput->get()) - : &tiledLoop.appendOutputOperand(b, producerOutput->get()); - - OpOperand &resultOperand = tiledLoop->getOpOperand(opNumber); - auto addedBlockArg = tiledLoop.getTiedBlockArgument(*addedOutput); - auto resultOperandBlockArg = tiledLoop.getTiedBlockArgument(resultOperand); - resultOperandBlockArg.replaceAllUsesWith(addedBlockArg); - tiledLoop.eraseOperand(b, resultOperand); - tiledOperands.push_back(addedBlockArg); - } - return tiledOperands; +static SmallVector getTiledOperands(LinalgOp producer) { + return producer.getInputAndOutputOperands(); } /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` @@ -198,7 +143,7 @@ // Compute subranges for all tensor input/output operands. clonedShapes.append(makeTiledShapes(b, loc, producer, - getTiledOperands(b, producer), ivs, + getTiledOperands(producer), ivs, tileSizes, sizeBounds)); // Iterate over the results in order. diff --git a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Loops.cpp @@ -260,72 +260,6 @@ } }; -/// Converts tiled_loop to SCF loop nests. All parallel dimensions are collected -/// into an scf.parallel loop and all sequential dimensions will result in the -/// nested scf.for loop nest. The pattern assumes that a tiled loop with -/// iterator_types ["reduction", "parallel", "reduction"] can be reordered. It -/// is true for the tiling that is currently suppported by Linalg. -struct TiledLoopToSCFPattern : public OpRewritePattern { - using OpRewritePattern::OpRewritePattern; - - LogicalResult matchAndRewrite(TiledLoopOp tiledLoop, - PatternRewriter &rewriter) const override { - // Fail conversion if the `tiled_loop` has not been bufferized. - if (!tiledLoop.hasBufferSemantics()) - return failure(); - - // Collect loop control parameters for parallel and sequential dimensions. - SmallVector seqLBs, seqUBs, seqSteps, seqIVs; - SmallVector parLBs, parUBs, parSteps, parIVs; - for (const auto &en : llvm::enumerate( - llvm::zip(tiledLoop.lowerBound(), tiledLoop.upperBound(), - tiledLoop.step(), tiledLoop.getInductionVars()))) { - Value lb, ub, step, iv; - std::tie(lb, ub, step, iv) = en.value(); - if (tiledLoop.isParallelDimension(en.index())) { - parLBs.push_back(lb); - parUBs.push_back(ub); - parSteps.push_back(step); - parIVs.push_back(iv); - } else { - seqLBs.push_back(lb); - seqUBs.push_back(ub); - seqSteps.push_back(step); - seqIVs.push_back(iv); - } - } - - Location loc = tiledLoop.getLoc(); - auto generateForLoopNestAndCloneBody = [&](OpBuilder &builder, Location loc, - ValueRange ivs) { - BlockAndValueMapping bvm; - bvm.map(parIVs, ivs); - bvm.map(tiledLoop.getRegionInputArgs(), tiledLoop.inputs()); - bvm.map(tiledLoop.getRegionOutputArgs(), tiledLoop.outputs()); - - // If not all dimensions of the tiled loop are parallel, an scf.for loop - // nest is generated. - if (!seqIVs.empty()) { - scf::LoopNest nest = - scf::buildLoopNest(builder, loc, seqLBs, seqUBs, seqSteps, - [&](OpBuilder &builder, Location loc, - ValueRange ivs) { bvm.map(seqIVs, ivs); }); - builder.setInsertionPointToStart(nest.loops.back().getBody()); - } - for (auto &op : tiledLoop.getBody()->without_terminator()) - builder.clone(op, bvm); - }; - - if (parIVs.empty()) - generateForLoopNestAndCloneBody(rewriter, loc, llvm::None); - else - rewriter.create(loc, parLBs, parUBs, parSteps, - generateForLoopNestAndCloneBody); - rewriter.eraseOp(tiledLoop); - return success(); - } -}; - /// Local folding pattern for AffineApplyOp that we can apply greedily. /// This replaces AffineApplyOp by the proper value in cases where the /// associated map is trivial. @@ -402,136 +336,8 @@ } }; -struct LowerTiledLoopsToSCF - : public LinalgLowerTiledLoopsToSCFBase { - void runOnOperation() override { - MLIRContext *context = &getContext(); - RewritePatternSet patterns(context); - populateTiledLoopToSCFPattern(patterns); - (void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)); - } -}; } // namespace -/// Rewrite a TiledLoopOp with bounds/step that potentially do not divide evenly -/// into two TiledLoopOps: One where the step divides the iteration space -/// evenly, followed another one for the last (partial) iteration (if any). This -/// function only rewrites the `idx`-th loop of the loop nest represented by -/// the TiledLoopOp. To peel the entire loop nest, this function must be called -/// multiple times. -/// -/// This function rewrites the given TiledLoopOp in-place and creates a new -/// TiledLoopOp for the last iteration. It replaces all uses of the original -/// TiledLoopOp with the results of the newly generated one. -/// -/// The newly generated TiledLoopOp is returned via `result`. The boundary -/// at which the loop is split (new upper bound) is returned via `splitBound`. -/// The return value indicates whether the TiledLoopOp was rewritten or not. -static LogicalResult peelTiledLoop(RewriterBase &b, TiledLoopOp loopOp, - int64_t idx, TiledLoopOp &result, - Value &splitBound) { - Value lb = loopOp.lowerBound()[idx], ub = loopOp.upperBound()[idx], - step = loopOp.step()[idx]; - auto ubInt = getConstantIntValue(ub); - - auto loc = loopOp.getLoc(); - AffineExpr exprLb, exprUb, exprStep; - bindSymbols(b.getContext(), exprLb, exprUb, exprStep); - // New upper bound: %ub - (%ub - %lb) mod %step - auto modMap = AffineMap::get(0, 3, {exprUb - ((exprUb - exprLb) % exprStep)}); - SmallVector operands{lb, ub, step}; - mlir::canonicalizeMapAndOperands(&modMap, &operands); - modMap = mlir::simplifyAffineMap(modMap); - RewriterBase::InsertionGuard guard(b); - b.setInsertionPoint(loopOp); - splitBound = b.createOrFold(loc, modMap, operands); - // No specialization necessary if step already divides upper bound evenly. - if (splitBound == ub || (ubInt && ubInt == getConstantIntValue(splitBound))) - return failure(); - - // Create remainder loop. - b.setInsertionPointAfter(loopOp); - auto remainderLoop = cast(b.clone(*loopOp.getOperation())); - loopOp.replaceAllUsesWith(remainderLoop->getResults()); - // Outputs: Take tensors from main loop's results. Take memrefs from main - // loop's outputs. - SmallVector remainderOutputs; - for (unsigned o = 0, t = 0; o < loopOp.getNumOutputs(); ++o) { - remainderOutputs.push_back(loopOp.outputs()[o].getType().isa() - ? loopOp.outputs()[o] - : loopOp->getResult(t++)); - } - remainderLoop.outputsMutable().assign(remainderOutputs); - - // Set new loop bounds. - b.updateRootInPlace(loopOp, [&]() { - SmallVector ubs = loopOp.upperBound(); - ubs[idx] = splitBound; - loopOp.upperBoundMutable().assign(ubs); - }); - SmallVector lbs = remainderLoop.lowerBound(); - lbs[idx] = splitBound; - remainderLoop.lowerBoundMutable().assign(lbs); - - result = remainderLoop; - return success(); -} - -template -static void -rewriteAffineOpAfterPeeling(RewriterBase &rewriter, TiledLoopOp mainLoop, - TiledLoopOp remainderLoop, Value mainIv, - Value remainderIv, Value ub, Value step) { - mainLoop.walk([&](OpTy affineOp) { - AffineMap map = affineOp.getAffineMap(); - (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, - affineOp.operands(), IsMin, mainIv, ub, - step, /*insideLoop=*/true); - }); - remainderLoop.walk([&](OpTy affineOp) { - AffineMap map = affineOp.getAffineMap(); - (void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, map, - affineOp.operands(), IsMin, remainderIv, - ub, step, /*insideLoop=*/false); - }); -} - -LogicalResult mlir::linalg::peelAndCanonicalizeTiledLoop(RewriterBase &rewriter, - TiledLoopOp loopOp, - int64_t idx, - TiledLoopOp &result) { - int64_t numLoops = loopOp.iterator_types().size(); - if (idx < 0 || numLoops <= idx) - return failure(); - - Value ub = loopOp.upperBound()[idx]; - TiledLoopOp remainderLoop; - Value splitBound; - if (failed(peelTiledLoop(rewriter, loopOp, idx, remainderLoop, splitBound))) - return failure(); - - // Rewrite affine.min and affine.max ops. - Value mainIv = loopOp.getInductionVars()[idx], step = loopOp.step()[idx], - remainderIv = remainderLoop.getInductionVars()[idx]; - - rewriteAffineOpAfterPeeling( - rewriter, loopOp, remainderLoop, mainIv, remainderIv, ub, step); - rewriteAffineOpAfterPeeling( - rewriter, loopOp, remainderLoop, mainIv, remainderIv, ub, step); - - result = remainderLoop; - return success(); -} - -void mlir::linalg::populateTiledLoopToSCFPattern(RewritePatternSet &patterns) { - patterns.add(patterns.getContext()); -} - -std::unique_ptr> -mlir::createConvertLinalgTiledLoopsToSCFPass() { - return std::make_unique(); -} - std::unique_ptr> mlir::createConvertLinalgToLoopsPass() { return std::make_unique(); } diff --git a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Tiling.cpp @@ -271,8 +271,6 @@ return tileLinalgOpImpl(b, op, options); case LinalgTilingLoopType::ParallelLoops: return tileLinalgOpImpl(b, op, options); - case LinalgTilingLoopType::TiledLoops: - return tileLinalgOpImpl(b, op, options); default:; } return failure(); @@ -453,13 +451,10 @@ namespace { struct LinalgTilingPass : public LinalgTilingBase { LinalgTilingPass() = default; - LinalgTilingPass(ArrayRef tileSizes, LinalgTilingLoopType loopType, - ArrayRef distributionTypes) { + LinalgTilingPass(ArrayRef tileSizes, LinalgTilingLoopType loopType) { this->tileSizes = tileSizes; this->loopType = ""; this->loopTypeEnum = loopType; - this->distributionTypes = llvm::to_vector<2>(llvm::map_range( - distributionTypes, [](StringRef ref) { return ref.str(); })); } void runOnOperation() override { @@ -469,14 +464,9 @@ .Case("for", LinalgTilingLoopType::Loops) .Case("affine", LinalgTilingLoopType::AffineLoops) .Case("parallel", LinalgTilingLoopType::ParallelLoops) - .Case("tiled_loop", LinalgTilingLoopType::TiledLoops) .Default(loopTypeEnum); - auto distTypes = llvm::to_vector<2>(llvm::map_range( - distributionTypes, [](std::string &str) { return StringRef(str); })); - auto options = LinalgTilingOptions() - .setTileSizes(tileSizes) - .setLoopType(type) - .setDistributionTypes(distTypes); + auto options = + LinalgTilingOptions().setTileSizes(tileSizes).setLoopType(type); MLIRContext *ctx = funcOp.getContext(); RewritePatternSet patterns(ctx); insertTilingPatterns(patterns, options); @@ -501,8 +491,6 @@ std::unique_ptr> mlir::createLinalgTilingPass(ArrayRef tileSizes, - linalg::LinalgTilingLoopType loopType, - ArrayRef distributionTypes) { - return std::make_unique(tileSizes, loopType, - distributionTypes); + linalg::LinalgTilingLoopType loopType) { + return std::make_unique(tileSizes, loopType); } diff --git a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/Transforms.cpp @@ -298,18 +298,6 @@ .Default([&](Operation *op) { return op->getResults(); }); } -/// Try to peel a TiledLoopOp and return the new result. -static SmallVector peelLoop(RewriterBase &rewriter, - TiledLoopOp tiledLoop, int64_t idx) { - assert(idx < static_cast(tiledLoop.iterator_types().size()) && - "requested peeling of non-existing loop"); - TiledLoopOp result; - if (succeeded(peelAndCanonicalizeTiledLoop(rewriter, tiledLoop, idx, result))) - return result->getResults(); - assert(!result && "expected that loop was not peeled"); - return tiledLoop->getResults(); -} - /// Peel loops after tiling. void mlir::linalg::peelTiledLinalgOp(RewriterBase &rewriter, TiledLinalgOp &res, ArrayRef peeledLoops, @@ -319,17 +307,7 @@ "requested peeling of non-existing loop"); SmallVector loopResults; Operation *loopOp = res.loops[loop]; - if (loopType == LinalgTilingLoopType::TiledLoops) { - assert(llvm::all_of( - res.loops, - [&](Operation *op) { return op == res.loops.front(); }) && - "expected that all loop ops are the same TiledLoopOp"); - auto tiledLoopOp = dyn_cast(loopOp); - assert(tiledLoopOp && "expected TiledLoopOp"); - loopResults = peelLoop(rewriter, tiledLoopOp, loop); - } else { - loopResults = peelLoop(rewriter, loopOp); - } + loopResults = peelLoop(rewriter, loopOp); // The result of the loop nest may change with peeling. if (res.tensorResults.size() == loopOp->getNumResults() && diff --git a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp --- a/mlir/lib/Dialect/Linalg/Utils/Utils.cpp +++ b/mlir/lib/Dialect/Linalg/Utils/Utils.cpp @@ -125,7 +125,6 @@ template struct mlir::linalg::GenerateLoopNest; template struct mlir::linalg::GenerateLoopNest; template struct mlir::linalg::GenerateLoopNest; -template struct mlir::linalg::GenerateLoopNest; /// Given a list of subview ranges, extract individual values for lower, upper /// bounds and steps and put them into the corresponding vectors. @@ -537,39 +536,6 @@ }); } -/// Specialization to build an linalg.tiled_loop -template <> -void GenerateLoopNest::doit( - OpBuilder &b, Location loc, ArrayRef loopRanges, LinalgOp linalgOp, - ArrayRef iteratorTypes, - function_ref - bodyBuilderFn, - Optional distributionOptions, - ArrayRef distributionTypes) { - SmallVector procInfo; - SmallVector lbs, ubs, steps; - unpackRanges(loopRanges, lbs, ubs, steps); - - auto wrappedBuilderFn = [&](OpBuilder &nestedBuilder, Location nestedLoc, - ValueRange ivs, ValueRange inputs, - ValueRange outputs) { - SmallVector operandValuesToUse = inputs; - operandValuesToUse.append(outputs.begin(), outputs.end()); - scf::ValueVector results = - bodyBuilderFn(nestedBuilder, nestedLoc, ivs, operandValuesToUse); - nestedBuilder.create(nestedLoc, results); - }; - - SmallVector inputOperands = linalgOp.getInputOperands(); - SmallVector outputOperands = linalgOp.getOutputOperands(); - auto tiledLoop = - b.create(loc, lbs, ubs, steps, inputOperands, outputOperands, - b.getArrayAttr(iteratorTypes), wrappedBuilderFn); - if (!distributionTypes.empty()) - tiledLoop.setDistributionTypes(b, distributionTypes); -} - /// Update the `lb`, `ub` and `step` to get per processor `lb`, `ub` and `step`. void updateBoundsForCyclicDistribution(OpBuilder &b, Location loc, Value procId, Value nprocs, Value &lb, Value &ub, diff --git a/mlir/test/Dialect/Linalg/canonicalize.mlir b/mlir/test/Dialect/Linalg/canonicalize.mlir --- a/mlir/test/Dialect/Linalg/canonicalize.mlir +++ b/mlir/test/Dialect/Linalg/canonicalize.mlir @@ -18,31 +18,6 @@ // ----- -#map = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> - -// CHECK-LABEL: func @memref_cast_into_tiled_loop( -func @memref_cast_into_tiled_loop(%arg0: memref<192xf32>) { - %0 = memref.cast %arg0 - : memref<192xf32> to memref<192xf32, #map> - %cst = arith.constant 0.000000e+00 : f32 - %c24 = arith.constant 24 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - // CHECK: linalg.tiled_loop - // CHECK-SAME: outs (%{{.*}} = %{{.*}}: memref<192xf32>) - linalg.tiled_loop (%arg3) = (%c0) to (%c192) step (%c24) - outs (%out = %0: memref<192xf32, #map>) { - %14 = affine.min affine_map<(d0) -> (-d0 + 192, 24)>(%arg3) - %16 = memref.subview %out[%arg3] [%14] [1] - : memref<192xf32, #map> to memref - linalg.fill(%cst, %16) : f32, memref - linalg.yield - } - return -} - -// ----- - #accesses = [ affine_map<(i) -> (i)> ] @@ -368,70 +343,6 @@ } -// ----- - -func private @foo(%A: memref<48xf32>, %B: tensor<48xf32>, - %C: memref<48xf32>) -> (tensor<48xf32>) - -func @fold_tiled_loop_results(%A: memref<48xf32>, %B: tensor<48xf32>, - %C: memref<48xf32>, %C_tensor: tensor<48xf32>) -> tensor<48xf32> { - %c0 = arith.constant 0 : index - %c24 = arith.constant 24 : index - %c48 = arith.constant 48 : index - %useful, %useless = linalg.tiled_loop (%i) = (%c0) to (%c48) step (%c24) - ins (%A_ = %A: memref<48xf32>) - outs (%B_ = %B: tensor<48xf32>, - %CT_ = %C_tensor: tensor<48xf32>, - %C_ = %C: memref<48xf32>) { - %result = call @foo(%A_, %B_, %C_) - : (memref<48xf32>, tensor<48xf32>, memref<48xf32>)-> (tensor<48xf32>) - linalg.yield %result, %CT_ : tensor<48xf32>, tensor<48xf32> - } - return %useful : tensor<48xf32> -} - -// CHECK-LABEL: func @fold_tiled_loop_results( -// CHECK-SAME: %[[A:.*]]: [[BUF_TY:memref<48xf32>]], %[[B:.*]]: [[TY:tensor<48xf32>]], -// CHECK-SAME: %[[C:.*]]: [[BUF_TY]], %[[C_TENSOR:.*]]: [[TY]]) -> [[TY]] { - -// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[C24:.*]] = arith.constant 24 : index -// CHECK-DAG: %[[C48:.*]] = arith.constant 48 : index - -// CHECK-NOT: %{{.*}} = linalg.tiled_loop -// CHECK: %[[RESULT:.*]] = linalg.tiled_loop (%{{.*}}) = (%[[C0]]) -// CHECK-SAME: to (%[[C48]]) step (%[[C24]]) -// CHECK-SAME: ins (%[[A_:.*]] = %[[A]]: [[BUF_TY]]) -// CHECK-SAME: outs (%[[B_:.*]] = %[[B]]: [[TY]], %[[C_:.*]] = %[[C]]: [[BUF_TY]]) { -// CHECK-NEXT: %[[RES:.*]] = call @foo(%[[A_]], %[[B_]], %[[C_]]) -// CHECK-NEXT: linalg.yield %[[RES]] : - -// CHECK: return %[[RESULT]] - -// ----- - -func private @foo(%A: memref<192xf32>, %B: tensor<192xf32>) -> tensor<192xf32> - -func @fold_tiled_loop_inputs(%A: memref<192xf32>, %A_tensor: tensor<192xf32>, - %B_tensor: tensor<192xf32>) -> tensor<192xf32> { - %c0 = arith.constant 0 : index - %c24 = arith.constant 24 : index - %c192 = arith.constant 192 : index - %result = linalg.tiled_loop (%i) = (%c0) to (%c192) step (%c24) - ins (%A_ = %A: memref<192xf32>, %AT_ = %A_tensor: tensor<192xf32>) - outs (%BT_ = %B_tensor: tensor<192xf32>) { - %0 = call @foo(%A_, %BT_) : (memref<192xf32>, tensor<192xf32>) -> tensor<192xf32> - linalg.yield %0 : tensor<192xf32> - } - return %result : tensor<192xf32> -} - -// CHECK-LABEL: func @fold_tiled_loop_inputs -// CHECK: %[[RESULT:.*]] = linalg.tiled_loop -// CHECK-SAME: ins (%{{.*}} = %{{.*}}: memref<192xf32>) - -// CHECK: return %[[RESULT]] - // ----- func private @some_use(%i : index, %j : index) @@ -470,108 +381,6 @@ // ----- -// CHECK-LABEL: func @dim_of_tiled_loop_input_no_canonicalize( -// CHECK-SAME: %[[arg0:.*]]: tensor, %[[arg1:.*]]: tensor, %[[arg2:.*]]: tensor -// CHECK: %[[c0:.*]] = arith.constant 0 : index -// CHECK: linalg.tiled_loop {{.*}} outs (%[[o:.*]] = -// CHECK: %[[dim:.*]] = tensor.dim %[[o]], %[[c0]] -// CHECK: arith.index_cast %[[dim]] -func @dim_of_tiled_loop_input_no_canonicalize(%arg0: tensor, %arg1: tensor, %arg2: tensor, %s: index) - -> tensor { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %d0 = tensor.dim %arg0, %c0 : tensor - %d1 = tensor.dim %arg0, %c1 : tensor - %r = linalg.tiled_loop (%iv0, %iv1) = (%c0, %c0) - to (%d0, %d1) step (%c1, %c1) - ins (%in0 = %arg0 : tensor, %in1 = %arg1 : tensor) - outs (%out1 = %arg2 : tensor) { - %inner_dim = tensor.dim %out1, %c0 : tensor - %cast1 = arith.index_cast %inner_dim : index to i32 - %cast2 = arith.sitofp %cast1 : i32 to f32 - %fill = linalg.fill(%cast2, %out1) : f32, tensor -> tensor - %slice = tensor.extract_slice %fill[0, 0][%s, %s][1, 1] : tensor to tensor - linalg.yield %slice : tensor - } - return %r : tensor -} - -// ----- - -// CHECK-LABEL: func @dim_of_tiled_loop_input( -// CHECK-SAME: %[[arg0:.*]]: tensor, %[[arg1:.*]]: tensor, %[[arg2:.*]]: tensor -// CHECK: %[[c0:.*]] = arith.constant 0 : index -// CHECK: linalg.tiled_loop -// CHECK: %[[dim:.*]] = tensor.dim %[[arg1]], %[[c0]] -// CHECK: arith.index_cast %[[dim]] -func @dim_of_tiled_loop_input(%arg0: tensor, %arg1: tensor, %arg2: tensor) - -> tensor { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %d0 = tensor.dim %arg0, %c0 : tensor - %d1 = tensor.dim %arg0, %c1 : tensor - %r = linalg.tiled_loop (%iv0, %iv1) = (%c0, %c0) - to (%d0, %d1) step (%c1, %c1) - ins (%in0 = %arg0 : tensor, %in1 = %arg1 : tensor) - outs (%out1 = %arg2 : tensor) { - %inner_dim = tensor.dim %in1, %c0 : tensor - %cast1 = arith.index_cast %inner_dim : index to i32 - %cast2 = arith.sitofp %cast1 : i32 to f32 - %fill = linalg.fill(%cast2, %out1) : f32, tensor -> tensor - linalg.yield %fill : tensor - } - return %r : tensor -} - -// ----- - -// CHECK-LABEL: func @dim_of_tiled_loop_result( -// CHECK-SAME: %[[arg0:.*]]: tensor, %[[arg1:.*]]: tensor, %[[arg2:.*]]: tensor -// CHECK: %[[c0:.*]] = arith.constant 0 : index -// CHECK: tensor.dim %[[arg2]], %[[c0]] -func @dim_of_tiled_loop_result(%arg0: tensor, %arg1: tensor, %arg2: tensor, %s: index) - -> index { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %d0 = tensor.dim %arg0, %c0 : tensor - %d1 = tensor.dim %arg0, %c1 : tensor - %r = linalg.tiled_loop (%iv0, %iv1) = (%c0, %c0) - to (%d0, %d1) step (%c1, %c1) - ins (%in0 = %arg0 : tensor, %in1 = %arg1 : tensor) - outs (%out1 = %arg2 : tensor) { - %1 = tensor.insert_slice %arg0 into %out1 [0, 0] [%s, %s] [1, 1] : tensor into tensor - linalg.yield %1 : tensor - } - %r2 = tensor.dim %r, %c0 : tensor - return %r2 : index -} - -// ----- - -// CHECK-LABEL: func @dim_of_tiled_loop_result_no_canonicalize( -// CHECK-SAME: %[[arg0:.*]]: tensor, %[[arg1:.*]]: tensor, %[[arg2:.*]]: tensor -// CHECK: %[[c0:.*]] = arith.constant 0 : index -// CHECK: %[[r:.*]] = linalg.tiled_loop -// CHECK: tensor.dim %[[r]], %[[c0]] -func @dim_of_tiled_loop_result_no_canonicalize(%arg0: tensor, %arg1: tensor, %arg2: tensor, %s: index) - -> index { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %d0 = tensor.dim %arg0, %c0 : tensor - %d1 = tensor.dim %arg0, %c1 : tensor - %r = linalg.tiled_loop (%iv0, %iv1) = (%c0, %c0) - to (%d0, %d1) step (%c1, %c1) - ins (%in0 = %arg0 : tensor, %in1 = %arg1 : tensor) - outs (%out1 = %arg2 : tensor) { - %1 = tensor.insert_slice %arg0 into %arg1 [0, 0] [%s, %s] [1, 1] : tensor into tensor - linalg.yield %1 : tensor - } - %r2 = tensor.dim %r, %c0 : tensor - return %r2 : index -} - -// ----- - // CHECK: func @fold_self_copy func @fold_self_copy(%0 : memref<4x16xf32>) { // CHECK-NEXT: return diff --git a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-analysis.mlir b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-analysis.mlir --- a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-analysis.mlir +++ b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize-analysis.mlir @@ -639,7 +639,7 @@ %lb : index, %ub : index, %step : index) - -> (tensor, tensor) + -> (tensor) { // %r0 must be out of place because one use of %t in the subsequent production // of %r1 is read. @@ -666,38 +666,9 @@ scf.yield %t : tensor } - // %r2 must be out of place because one use of %t in the subsequent production - // of %r3 is read. - // CHECK: linalg.tiled_loop - // CHECK-NEXT: call - // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} - // CHECK-NEXT: linalg.yield - // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} - // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "false"]} - %r2 = linalg.tiled_loop (%i) = (%lb) to (%ub) step (%step) - ins() - outs(%t = %B: tensor) { - call @some_use(%t) : (tensor) -> () - linalg.yield %t : tensor - } - - // %r3 bufferizes inplace fine. - // CHECK: linalg.tiled_loop - // CHECK-NEXT: call - // CHECK-SAME: {__inplace_operands_attr__ = ["false"]} - // CHECK-NEXT: linalg.yield - // CHECK-SAME: {__inplace_operands_attr__ = ["true"]} - // CHECK: } {__inplace_operands_attr__ = ["none", "none", "none", "true"]} - %r3 = linalg.tiled_loop (%i) = (%lb) to (%ub) step (%step) - ins() - outs(%t = %B: tensor) { - call @some_use(%t) : (tensor) -> () - linalg.yield %t : tensor - } - // CHECK: return - // CHECK-SAME: __equivalent_func_args__ = [0, 1] - return %r1, %r3: tensor, tensor + // CHECK-SAME: __equivalent_func_args__ = [0] + return %r1: tensor } // ----- diff --git a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir --- a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir +++ b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir @@ -640,146 +640,6 @@ // ----- -func private @some_use(memref) - -#TILE_MAP = affine_map<(d0)[s0] -> (3, -d0 + s0)> - -// CHECK-DAG: #[[$DYN_0D_MAP:.*]] = affine_map<()[s0] -> (s0)> -// CHECK-DAG: #[[$DYN_1D_MAP:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> -// CHECK-DAG: #[[$TILE_MAP:.*]] = affine_map<(d0)[s0] -> (3, -d0 + s0)> - -// CHECK: func @tiled_dot( -// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref -// CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref -// CHECK-SAME: %[[c:[a-zA-Z0-9]*]]: memref -func @tiled_dot( - %A: tensor {linalg.inplaceable = false}, - %B: tensor {linalg.inplaceable = false}, - %c: tensor {linalg.inplaceable = true}, - %effecting: memref) - -> tensor -{ - %c3 = arith.constant 3 : index - %c0 = arith.constant 0 : index - - // CHECK: %[[M:.*]] = memref.dim %[[A]], {{.*}} : memref - %0 = tensor.dim %A, %c0 : tensor - - // CHECK: linalg.tiled_loop {{.*}} to (%[[M]]) {{.*}} %[[A]]{{.*}}%[[B]]{{.*}}outs{{.*}}%[[c]] - // CHECK-NOT: copy - %1 = linalg.tiled_loop (%arg3) = (%c0) to (%0) step (%c3) - ins (%arg4 = %A: tensor, %use = %effecting : memref, %arg5 = %B: tensor) - outs (%arg6 = %c: tensor) - iterators["reduction"] - { - // CHECK-NOT: alloc - - %2 = tensor.dim %arg4, %c0 : tensor - %3 = affine.min #TILE_MAP(%arg3)[%2] - - // CHECK: %[[SV_A:.*]] = memref.subview {{.*}} - %4 = tensor.extract_slice %arg4[%arg3] [%3] [1] : tensor to tensor - %5 = tensor.dim %arg5, %c0 : tensor - %6 = affine.min #TILE_MAP(%arg3)[%5] - - // CHECK: %[[SV_B:.*]] = memref.subview {{.*}} - %7 = tensor.extract_slice %arg5[%arg3] [%6] [1] : tensor to tensor - - // CHECK: linalg.dot ins(%[[SV_A]], %[[SV_B]] : memref, memref) outs(%{{.*}} : memref) - %8 = linalg.dot ins(%4, %7 : tensor, tensor) outs(%arg6 : tensor) -> tensor - - // CHECK: call @some_use(%{{.*}}) : (memref) -> () - call @some_use(%use) : (memref) -> () - - linalg.yield %8 : tensor - // CHECK: linalg.yield - // CHECK-NOT: tensor - } - - // CHECK: return - // CHECK-NOT: tensor - return %1 : tensor -} - -// ----- - -#TILE_MAP = affine_map<(d0)[s0] -> (3, -d0 + s0)> - -// CHECK-DAG: #[[$DYN_MAP:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> - -// CHECK: func @tiled_fill( -// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref -func @tiled_fill(%A: tensor {linalg.inplaceable = true}) -> tensor { - %c3 = arith.constant 3 : index - %c0 = arith.constant 0 : index - %f0 = arith.constant 0.0 : f32 - - // CHECK: %[[M:.*]] = memref.dim %[[A]], {{.*}} : memref - %0 = tensor.dim %A, %c0 : tensor - - // CHECK: linalg.tiled_loop {{.*}} to (%[[M]]) {{.*}} outs{{.*}}%[[A]] - %1 = linalg.tiled_loop (%arg3) = (%c0) to (%0) step (%c3) - outs (%arg1 = %A: tensor) - iterators["parallel"] - { - // CHECK-NOT: alloc - - %2 = tensor.dim %arg1, %c0 : tensor - %3 = affine.min #TILE_MAP(%arg3)[%2] - - // CHECK: %[[SV_A:.*]] = memref.subview {{.*}} - %4 = tensor.extract_slice %arg1[%arg3] [%3] [1] : tensor to tensor - - // CHECK: linalg.fill(%{{.*}}, %[[SV_A]]) : f32, memref - %5 = linalg.fill(%f0, %4) : f32, tensor -> tensor - %6 = tensor.insert_slice %5 into %arg1[%arg3] [%3] [1] : tensor into tensor - - linalg.yield %6 : tensor - // CHECK: linalg.yield - // CHECK-NOT: tensor - } - - // CHECK: return - // CHECK-NOT: tensor - return %1 : tensor -} - -// ----- - -// CHECK: func @tiled_loop_yield_out_of_place( -// CHECK-SAME: %[[A:[a-zA-Z0-9]*]]: memref, -// CHECK-SAME: %[[B:[a-zA-Z0-9]*]]: memref -func @tiled_loop_yield_out_of_place( - %A: tensor {linalg.inplaceable = true}, - %B: tensor {linalg.inplaceable = true}) - -> tensor -{ - %c3 = arith.constant 3 : index - %c0 = arith.constant 0 : index - %f0 = arith.constant 0.0 : f32 - - // CHECK: %[[M:.*]] = memref.dim %[[A]], {{.*}} : memref - %0 = tensor.dim %A, %c0 : tensor - - // CHECK: linalg.tiled_loop {{.*}} to (%[[M]]) {{.*}} outs{{.*}}%[[A]] - %1 = linalg.tiled_loop (%arg3) = (%c0) to (%0) step (%c3) - outs (%arg1 = %A: tensor) - iterators["parallel"] - { - // CHECK-NOT: alloc - // CHECK: memref.copy %[[B]], %[[A]] - linalg.yield %B : tensor - // CHECK: linalg.yield - // CHECK-NOT: tensor - } - - // CHECK: return - // CHECK-NOT: tensor - return %1 : tensor -} - -// ----- - // CHECK: #[[$DYNAMIC:.*]] = affine_map<(d0)[s0, s1] -> (d0 * s1 + s0)> // CHECK: func private @external_func(memref) diff --git a/mlir/test/Dialect/Linalg/distribute-tiled-loop.mlir b/mlir/test/Dialect/Linalg/distribute-tiled-loop.mlir deleted file mode 100644 --- a/mlir/test/Dialect/Linalg/distribute-tiled-loop.mlir +++ /dev/null @@ -1,39 +0,0 @@ -// RUN: mlir-opt -test-linalg-distribution %s | FileCheck %s - -func private @foo(%A: tensor<64x64xf32>, - %B: tensor<64x64xf32>) -> tensor<64x64xf32> - -func @distribute_for_gpu(%A: tensor<64x64xf32>, - %B: tensor<64x64xf32>) -> tensor<64x64xf32> { - %c0 = arith.constant 0 : index - %c16 = arith.constant 16 : index - %c64 = arith.constant 64 : index - %c24 = arith.constant 24 : index - %0 = linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c64, %c64) step (%c24, %c16) - ins (%A_ = %A: tensor<64x64xf32>) outs (%B_ = %B:tensor<64x64xf32>) - distribution ["block_x", "block_y"] { - %0 = call @foo(%A_, %B_) - : (tensor<64x64xf32>, tensor<64x64xf32>) -> tensor<64x64xf32> - linalg.yield %0 : tensor<64x64xf32> - } - return %0 : tensor<64x64xf32> -} - -// CHECK-DAG: #[[$MAP0:.+]] = affine_map<()[s0] -> (s0 * 24)> -// CHECK-DAG: #[[$MAP1:.+]] = affine_map<()[s0] -> (s0 * 16)> - -// CHECK-LABEL: func @distribute_for_gpu -// CHECK: %[[C64:.*]] = arith.constant 64 : index - -// CHECK-DAG: %[[GPU_BLOCK_X:.*]] = gpu.block_id x -// CHECK-DAG: %[[GPU_GRID_DIM_X:.*]] = gpu.grid_dim x -// CHECK-DAG: %[[LB_I:.*]] = affine.apply #[[$MAP0]](){{\[}}%[[GPU_BLOCK_X]]] -// CHECK-DAG: %[[STEP_I:.*]] = affine.apply #[[$MAP0]](){{\[}}%[[GPU_GRID_DIM_X]]] - -// CHECK-DAG: %[[GPU_BLOCK_Y:.*]] = gpu.block_id y -// CHECK-DAG: %[[GPU_GRID_DIM_Y:.*]] = gpu.grid_dim y -// CHECK-DAG: %[[LB_J:.*]] = affine.apply #[[$MAP1]](){{\[}}%[[GPU_BLOCK_Y]]] -// CHECK-DAG: %[[STEP_J:.*]] = affine.apply #[[$MAP1]](){{\[}}%[[GPU_GRID_DIM_Y]]] - -// CHECK: linalg.tiled_loop (%[[I:.*]], %[[J:.*]]) = (%[[LB_I]], %[[LB_J]]) -// CHECK-SAME: to (%[[C64]], %[[C64]]) step (%[[STEP_I]], %[[STEP_J]]) diff --git a/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir b/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir --- a/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir +++ b/mlir/test/Dialect/Linalg/fusion-tensor-pattern.mlir @@ -1,5 +1,4 @@ // RUN: mlir-opt %s -test-linalg-tensor-fusion-transform-patterns -resolve-shaped-type-result-dims -canonicalize -cse --split-input-file | FileCheck %s -// RUN: mlir-opt %s -test-linalg-tiled-loop-fusion-transform-patterns -resolve-shaped-type-result-dims -canonicalize -cse --split-input-file | FileCheck %s --check-prefix=TLOOP module { func @matmul_fusion(%A: tensor, %B: tensor, @@ -83,64 +82,6 @@ // CHECK: } // CHECK: return %[[RESULT]] -// TLOOP-LABEL: func @matmul_fusion( -// TLOOP-SAME: %[[A:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[B:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[AB_INIT:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[C:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[ABC_INIT:[a-zA-Z0-9_]+]]: tensor) -> tensor { - -// TLOOP-DAG: %[[C32:.*]] = arith.constant 32 : index -// TLOOP-DAG: %[[C64:.*]] = arith.constant 64 : index -// TLOOP-DAG: %[[C16:.*]] = arith.constant 16 : index -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index - -// TLOOP: %[[DIM_A0:.*]] = tensor.dim %[[A]], %[[C0]] : [[TY:.*]] - -// TLOOP: %[[ABC:.*]] = linalg.tiled_loop (%[[IV0:.*]]) = (%[[C0]]) -// TLOOP-SAME: to (%[[DIM_A0]]) step (%[[C32]]) -// TLOOP-SAME: ins (%[[C_:.*]] = %[[C]]: tensor, -// TLOOP-SAME: %[[A_:.*]] = %[[A]]: tensor, -// TLOOP-SAME: %[[B_:.*]] = %[[B]]: tensor, -// TLOOP-SAME: %[[AB_INIT_:.*]] = %[[AB_INIT]]: tensor) -// TLOOP-SAME: outs (%[[ABC_INIT_:.*]] = %[[ABC_INIT]]: tensor) { - -// TLOOP: %[[ABC_INIT_SUB:.*]] = tensor.extract_slice %[[ABC_INIT_]][%[[IV0]], 0] -// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[IV0]], 0] -// TLOOP: %[[AB_INIT_SUB:.*]] = tensor.extract_slice %[[AB_INIT_]][%[[IV0]], 0] - -// TLOOP: %[[AB_SUB:.*]] = linalg.matmul -// TLOOP-SAME: ins(%[[A_SUB]], %[[B_]] : {{.*}}) outs(%[[AB_INIT_SUB]] - -// TLOOP: %[[DIM_B_1:.*]] = tensor.dim %[[B]], %[[C1]] : [[TY]] -// TLOOP: %[[DIM_C_1:.*]] = tensor.dim %[[C]], %[[C1]] : [[TY]] - -// TLOOP: %[[ABC_SUB_:.*]] = linalg.tiled_loop (%[[IV1:.*]], %[[IV2:.*]]) = -// TLOOP-SAME: (%[[C0]], %[[C0]]) to (%[[DIM_C_1]], %[[DIM_B_1]]) -// TLOOP-SAME: step (%[[C64]], %[[C16]]) -// TLOOP-SAME: ins (%[[AB_SUB_:.*]] = %[[AB_SUB]]: [[TY]], -// TLOOP-SAME: %[[C__:.*]] = %[[C_]]: [[TY]]) -// TLOOP-SAME: outs (%[[ABC_INIT_SUB_:.*]] = %[[ABC_INIT_SUB]]: [[TY]]) -// TLOOP-SAME: iterators["parallel", "reduction"] { - -// TLOOP: %[[AB_SUB_SUB:.*]] = tensor.extract_slice %[[AB_SUB_]][0, %[[IV2]]] -// TLOOP: %[[C__SUB:.*]] = tensor.extract_slice %[[C__]][%[[IV2]], %[[IV1]]] -// TLOOP: %[[ABS_INIT_SUB_SUB:.*]] = tensor.extract_slice %[[ABC_INIT_SUB_]][0, %[[IV1]]] - -// TLOOP: %[[ABC_SUB_SUB:.*]] = linalg.matmul -// TLOOP-SAME: ins(%[[AB_SUB_SUB]], %[[C__SUB]] : [[TY]], [[TY]]) -// TLOOP-SAME: outs(%[[ABS_INIT_SUB_SUB]] : [[TY]]) -> [[TY]] - -// TLOOP: %[[RES0:.*]] = tensor.insert_slice %[[ABC_SUB_SUB]] -// TLOOP-SAME: into %[[ABC_INIT_SUB_]][0, %[[IV1]]] -// TLOOP: linalg.yield %[[RES0]] : [[TY]] -// TLOOP: } -// TLOOP: %[[RES1:.*]] = tensor.insert_slice %[[ABC_SUB_]] into %[[ABC_INIT_]][%[[IV0]], 0] -// TLOOP: linalg.yield %[[RES1]] : [[TY]] -// TLOOP: } -// TLOOP: return %[[ABC]] : [[TY]] - // ----- module { @@ -195,48 +136,6 @@ // CHECK: scf.yield %[[YIELD]] // CHECK: return %[[RESULT]] -// TLOOP-LABEL: func @matmul_plus_matmul -// TLOOP-SAME: %[[A:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[B:[a-zA-Z0-9_]+]]: tensor, -// TLOOP-SAME: %[[AB:[a-zA-Z0-9_]+]]: tensor - -// TLOOP-DAG: %[[C32:.*]] = arith.constant 32 : index -// TLOOP-DAG: %[[C64:.*]] = arith.constant 64 : index -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index - -// TLOOP: %[[DIM_A_0:.*]] = tensor.dim %[[A]], %[[C0]] : [[TY:.*]] -// TLOOP: %[[DIM_B_1:.*]] = tensor.dim %[[B]], %[[C1]] : [[TY]] - -// TLOOP: %[[INIT:.*]] = linalg.init_tensor [%[[DIM_A_0]], %[[DIM_B_1]]] - -// TLOOP: %[[RESULT:.*]] = linalg.tiled_loop (%[[IV0:.*]], %[[IV1:.*]]) = -// TLOOP-SAME: (%[[C0]], %[[C0]]) to (%[[DIM_A_0]], %[[DIM_B_1]]) -// TLOOP-SAME: step (%[[C32]], %[[C64]]) -// TLOOP-SAME: ins (%[[A_:.*]] = %[[A]]: [[TY]], -// TLOOP-SAME: %[[B_:.*]] = %[[B]]: [[TY]], -// TLOOP-SAME: %[[AB_:.*]] = %[[AB]]: [[TY]]) -// TLOOP-SAME: outs (%[[INIT_:.*]] = %[[INIT]]: [[TY]]) { - -// TLOOP: %[[INIT_SUB:.*]] = tensor.extract_slice %[[INIT_]][%[[IV0]], %[[IV1]]] -// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[IV0]], 0] -// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[IV1]]] -// TLOOP: %[[AB_SUB_INIT:.*]] = tensor.extract_slice %[[AB_]][%[[IV0]], %[[IV1]]] - -// TLOOP: %[[AB_SUB:.*]] = linalg.matmul -// TLOOP-SAME: ins(%[[A_SUB]], %[[B_SUB]] : [[TY]], [[TY]]) -// TLOOP-SAME: outs(%[[AB_SUB_INIT]] : [[TY]]) - -// TLOOP: %[[DOUBLE_AB:.*]] = linalg.generic -// TLOOP-SAME: ins(%[[AB_SUB]] : [[TY]]) outs(%[[INIT_SUB]] : [[TY]]) - -// TLOOP: %[[RESULT_SUB:.*]] = tensor.insert_slice -// TLOOP-SAME: %[[DOUBLE_AB:.*]] into %[[INIT_]][%[[IV0]], %[[IV1]]] - -// TLOOP: linalg.yield %[[RESULT_SUB]] : [[TY]] -// TLOOP: } -// TLOOP: return %[[RESULT]] : [[TY]] - // ----- module { @@ -270,59 +169,6 @@ // CHECK: %[[MM:.*]] = tensor.insert_slice %[[ST_MM_RES]] into {{.*}} // CHECK: scf.yield %[[MM]] : tensor - -// TLOOP-LABEL: func @matmul_out_fusion( -// TLOOP-SAME: %[[OUT:[a-zA-Z0-9_]+]]: tensor -// TLOOP-SAME: %[[A:[a-zA-Z0-9_]+]]: tensor -// TLOOP-SAME: %[[B:[a-zA-Z0-9_]+]]: tensor - -// TLOOP-DAG: %[[C0_F32:.*]] = arith.constant 0.0 -// TLOOP-DAG: %[[C32:.*]] = arith.constant 32 : index -// TLOOP-DAG: %[[C64:.*]] = arith.constant 64 : index -// TLOOP-DAG: %[[C16:.*]] = arith.constant 16 : index -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index - -// TLOOP: %[[DIM_A_0:.*]] = tensor.dim %[[A]], %[[C0]] : [[TY:.*]] -// TLOOP: %[[DIM_B_1:.*]] = tensor.dim %[[B]], %[[C1]] : [[TY]] - -// TLOOP: %[[AB:.*]] = linalg.tiled_loop (%[[I:.*]], %[[J:.*]]) = -// TLOOP-SAME: (%[[C0]], %[[C0]]) to (%[[DIM_A_0]], %[[DIM_B_1]]) -// TLOOP-SAME: step (%[[C32]], %[[C64]]) -// TLOOP-SAME: ins (%[[A_:.*]] = %[[A]]: [[TY]], -// TLOOP-SAME: %[[B_:.*]] = %[[B]]: [[TY]], -// TLOOP-SAME: %[[C0_F32_:.*]] = %[[C0_F32]] -// TLOOP-SAME: outs (%[[OUT_:.*]] = %[[OUT]]: [[TY]]) { - -// TLOOP: %[[DIM_A__1:.*]] = tensor.dim %[[A]], %[[C1]] : [[TY]] -// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[I]], 0] -// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[J]]] -// TLOOP: %[[OUT_SUB:.*]] = tensor.extract_slice %[[OUT_]][%[[I]], %[[J]]] -// TLOOP: %[[INIT_SUB:.*]] = linalg.fill(%[[C0_F32_]], %[[OUT_SUB]]) - -// TLOOP: %[[AB_SUB:.*]] = linalg.tiled_loop (%[[K:.*]]) = (%[[C0]]) -// TLOOP-SAME: to (%[[DIM_A__1]]) step (%[[C16]]) -// TLOOP-SAME: ins (%[[A_SUB_:.*]] = %[[A_SUB]]: [[TY]], -// TLOOP-SAME: %[[B_SUB_:.*]] = %[[B_SUB]]: [[TY]]) -// TLOOP-SAME: outs (%[[INIT_SUB_:.*]] = %[[INIT_SUB]]: [[TY]]) -// TLOOP-SAME: iterators["reduction"] { - -// TLOOP: %[[A_SUB_SUB:.*]] = tensor.extract_slice %[[A_SUB_]][0, %[[K]]] -// TLOOP: %[[B_SUB_SUB:.*]] = tensor.extract_slice %[[B_SUB_]][%[[K]], 0] -// TLOOP: %[[INIT_SUB_SUB:.*]] = tensor.extract_slice %[[INIT_SUB_]][0, 0] - -// TLOOP: %[[AB_SUB_SUB:.*]] = linalg.matmul -// TLOOP-SAME: ins(%[[A_SUB_SUB]], %[[B_SUB_SUB]] : [[TY]], [[TY]]) -// TLOOP-SAME: outs(%[[INIT_SUB_SUB]] : [[TY]]) -> [[TY]] -// TLOOP: %[[AB_SUB_:.*]] = tensor.insert_slice %[[AB_SUB_SUB]] into %[[INIT_SUB_]] -// TLOOP: linalg.yield %[[AB_SUB_]] : [[TY]] -// TLOOP: } -// TLOOP: %[[SUB_RESULT:.*]] = tensor.insert_slice %[[AB_SUB]] -// TLOOP-SAME: into %[[OUT_]][%[[I]], %[[J]]] -// TLOOP: linalg.yield %[[SUB_RESULT]] : [[TY]] -// TLOOP: } -// TLOOP: return %[[AB]] : [[TY]] - // ----- module { @@ -343,58 +189,3 @@ return %1 : tensor } } - -// TLOOP-LABEL: func @generic_plus_matmul( -// TLOOP-SAME: %[[OUT:[a-zA-Z0-9_]+]]: tensor -// TLOOP-SAME: %[[A:[a-zA-Z0-9_]+]]: tensor -// TLOOP-SAME: %[[B:[a-zA-Z0-9_]+]]: tensor - -// TLOOP-DAG: %[[C0_F32:.*]] = arith.constant 0.0 -// TLOOP-DAG: %[[C32:.*]] = arith.constant 32 : index -// TLOOP-DAG: %[[C64:.*]] = arith.constant 64 : index -// TLOOP-DAG: %[[C16:.*]] = arith.constant 16 : index -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index - -// TLOOP: %[[DIM_A_0:.*]] = tensor.dim %[[A]], %[[C0]] : [[TY:.*]] -// TLOOP: %[[DIM_B_1:.*]] = tensor.dim %[[B]], %[[C1]] : [[TY]] - -// TLOOP: %[[AB:.*]] = linalg.tiled_loop (%[[I:.*]], %[[J:.*]]) = -// TLOOP-SAME: (%[[C0]], %[[C0]]) to (%[[DIM_A_0]], %[[DIM_B_1]]) -// TLOOP-SAME: step (%[[C32]], %[[C64]]) -// TLOOP-SAME: ins (%[[A_:.*]] = %[[A]]: [[TY]], -// TLOOP-SAME: %[[B_:.*]] = %[[B]]: [[TY]], -// TLOOP-SAME: %[[C0_F32_:.*]] = %[[C0_F32]] -// TLOOP-SAME: outs (%[[OUT_:.*]] = %[[OUT]]: [[TY]]) { - -// TLOOP: %[[DIM_A__1:.*]] = tensor.dim %[[A]], %[[C1]] : [[TY]] -// TLOOP: %[[A_SUB:.*]] = tensor.extract_slice %[[A_]][%[[I]], 0] -// TLOOP: %[[B_SUB:.*]] = tensor.extract_slice %[[B_]][0, %[[J]]] -// TLOOP: %[[OUT_SUB:.*]] = tensor.extract_slice %[[OUT_]][%[[I]], %[[J]]] -// TLOOP: %[[INIT_SUB:.*]] = linalg.generic -// TLOOP-SAME: ins(%[[C0_F32_]] -// TLOOP-SAME: outs(%[[OUT_SUB]] - -// TLOOP: %[[AB_SUB:.*]] = linalg.tiled_loop (%[[K:.*]]) = (%[[C0]]) -// TLOOP-SAME: to (%[[DIM_A__1]]) step (%[[C16]]) -// TLOOP-SAME: ins (%[[A_SUB_:.*]] = %[[A_SUB]]: [[TY]], -// TLOOP-SAME: %[[B_SUB_:.*]] = %[[B_SUB]]: [[TY]]) -// TLOOP-SAME: outs (%[[INIT_SUB_:.*]] = %[[INIT_SUB]]: [[TY]]) -// TLOOP-SAME: iterators["reduction"] { - -// TLOOP: %[[A_SUB_SUB:.*]] = tensor.extract_slice %[[A_SUB_]][0, %[[K]]] -// TLOOP: %[[B_SUB_SUB:.*]] = tensor.extract_slice %[[B_SUB_]][%[[K]], 0] -// TLOOP: %[[INIT_SUB_SUB:.*]] = tensor.extract_slice %[[INIT_SUB_]][0, 0] - -// TLOOP: %[[AB_SUB_SUB:.*]] = linalg.matmul -// TLOOP-SAME: ins(%[[A_SUB_SUB]], %[[B_SUB_SUB]] : [[TY]], [[TY]]) -// TLOOP-SAME: outs(%[[INIT_SUB_SUB]] : [[TY]]) -> [[TY]] -// TLOOP: %[[AB_SUB_:.*]] = tensor.insert_slice %[[AB_SUB_SUB]] into %[[INIT_SUB_]] -// TLOOP: linalg.yield %[[AB_SUB_]] : [[TY]] -// TLOOP: } -// TLOOP: %[[SUB_RESULT:.*]] = tensor.insert_slice %[[AB_SUB]] -// TLOOP-SAME: into %[[OUT_]][%[[I]], %[[J]]] -// TLOOP: linalg.yield %[[SUB_RESULT]] : [[TY]] -// TLOOP: } -// TLOOP: return %[[AB]] : [[TY]] - diff --git a/mlir/test/Dialect/Linalg/invalid.mlir b/mlir/test/Dialect/Linalg/invalid.mlir --- a/mlir/test/Dialect/Linalg/invalid.mlir +++ b/mlir/test/Dialect/Linalg/invalid.mlir @@ -411,110 +411,6 @@ // ----- -#map0 = affine_map<(d0) -> (24, -d0 + 192)> -#map1 = affine_map<(d0, d1)[s0] -> (d0 * 192 + s0 + d1)> -#map2 = affine_map<(d0) -> (16, -d0 + 192)> - -func private @foo(%A: memref<192x192xf32>, %B: memref<192x192xf32>, - %C: memref<192x192xf32>) -> () - -func @tiled_loop_incorrent_num_yield_operands(%A: memref<192x192xf32>, - %B: memref<192x192xf32>, %C: memref<192x192xf32>, - %C_tensor: tensor<192x192xf32>) { - %c24 = arith.constant 24 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - %0 = linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c192, %c192) - step (%c24, %c24) - ins (%A_ = %A: memref<192x192xf32>, %B_ = %B: memref<192x192xf32>) - outs (%CT_ = %C_tensor: tensor<192x192xf32>, - %C_ = %C: memref<192x192xf32>) { - call @foo(%A_, %B_, %C_) - : (memref<192x192xf32>, memref<192x192xf32>, memref<192x192xf32>)-> () - // expected-error @+1 {{expected number of tensor output args = 1 to match the number of yield operands = 0}} - linalg.yield - } - return -} - -// ----- - -#map0 = affine_map<(d0) -> (24, -d0 + 192)> -#map1 = affine_map<(d0, d1)[s0] -> (d0 * 192 + s0 + d1)> -#map2 = affine_map<(d0) -> (16, -d0 + 192)> - -func private @foo(%A: memref<192x192xf32>, %B: memref<192x192xf32>, - %C: memref<192x192xf32>) -> tensor - -func @tiled_loop_incorrent_yield_operand_type(%A: memref<192x192xf32>, - %B: memref<192x192xf32>, %C: memref<192x192xf32>, - %C_tensor: tensor<192x192xf32>) { - %c24 = arith.constant 24 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - %0 = linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c192, %c192) - step (%c24, %c24) - ins (%A_ = %A: memref<192x192xf32>, %B_ = %B: memref<192x192xf32>) - outs (%CT_ = %C_tensor: tensor<192x192xf32>, - %C_ = %C: memref<192x192xf32>) { - %1 = call @foo(%A_, %B_, %C_) - : (memref<192x192xf32>, memref<192x192xf32>, memref<192x192xf32>)-> tensor - // expected-error @+1 {{expected yield operand 0 with type = 'tensor' to match output arg type = 'tensor<192x192xf32>}} - linalg.yield %1 : tensor - } - return -} - -// ----- - -func private @foo(%A: memref<192x192xf32>, %B: memref<192x192xf32>, - %C: memref<192x192xf32>) -> () - -func @tiled_loop_incorrent_iterator_types_count(%A: memref<192x192xf32>, - %B: memref<192x192xf32>, %C: memref<192x192xf32>, - %C_tensor: tensor<192x192xf32>) { - %c24 = arith.constant 24 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - // expected-error @+1 {{expected iterator types array attribute size = 1 to match the number of loops = 2}} - %0 = "linalg.tiled_loop"(%c0, %c0, %c192, %c192, %c24, %c24, %A, %B, %C_tensor, %C) ({ - ^bb0(%arg4: index, %arg5: index, %A_: memref<192x192xf32>, - %B_: memref<192x192xf32>, %CT_: tensor<192x192xf32>, - %C_: memref<192x192xf32>): - call @foo(%A_, %B_, %C_) - : (memref<192x192xf32>, memref<192x192xf32>, memref<192x192xf32>)-> () - linalg.yield %CT_ : tensor<192x192xf32> - }) { - iterator_types = ["parallel"], - operand_segment_sizes = dense<2> : vector<5xi32> - } : (index, index, index, index, index, index, memref<192x192xf32>, - memref<192x192xf32>, tensor<192x192xf32>, memref<192x192xf32> - ) -> tensor<192x192xf32> - return -} - -// ----- - -func private @foo(%A: memref<100xf32>) -> () - -func @tiled_loop_incorrent_block_arg_type(%A: memref<192xf32>) { - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - %c24 = arith.constant 24 : index - // expected-error @+1 {{expected output arg 0 with type = 'memref<192xf32>' to match region arg 1 type = 'memref<100xf32>'}} - "linalg.tiled_loop"(%c0, %c192, %c24, %A) ({ - ^bb0(%arg4: index, %A_: memref<100xf32>): - call @foo(%A_) : (memref<100xf32>)-> () - linalg.yield - }) { - iterator_types = ["parallel"], - operand_segment_sizes = dense<[1, 1, 1, 0, 1]> : vector<5xi32> - } : (index, index, index, memref<192xf32>) -> () - return -} - -// ----- - #attrs = { indexing_maps = [ affine_map<(i) -> (3 - i)>, diff --git a/mlir/test/Dialect/Linalg/roundtrip.mlir b/mlir/test/Dialect/Linalg/roundtrip.mlir --- a/mlir/test/Dialect/Linalg/roundtrip.mlir +++ b/mlir/test/Dialect/Linalg/roundtrip.mlir @@ -6,8 +6,6 @@ // Test that we can lower all the way to LLVM without crashing, don't check results here. // DISABLED: mlir-opt %s --convert-linalg-to-llvm -o=/dev/null 2>&1 -// CHECK-DAG: #[[$id_2d:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)> -// CHECK-DAG: #[[$id_1d:.*]] = affine_map<(d0, d1, d2) -> (d1)> // CHECK-DAG: #[[$strided1D:.*]] = affine_map<(d0)[s0] -> (d0 + s0)> // CHECK-DAG: #[[$strided2D:.*]] = affine_map<(d0, d1)[s0, s1] -> (d0 * s1 + s0 + d1)> // CHECK-DAG: #[[$strided3D:.*]] = affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0 * s1 + s0 + d1 * s2 + d2)> @@ -155,7 +153,7 @@ linalg.generic {indexing_maps = [#map0], iterator_types = ["parallel", "parallel", "parallel"]} outs(%arg0 : memref) { - ^bb0(%arg3: f32): + ^bb0(%arg3: f32): %cst = arith.constant 0.000000e+00 : f32 linalg.yield %cst : f32 } @@ -218,7 +216,7 @@ iterator_types = ["reduction"]} ins(%arg0, %arg1 : tensor, tensor) outs(%1, %3 : tensor, tensor) { - ^bb0(%arg3: i32, %arg4: i32, %arg5: i32, %arg6: i32): + ^bb0(%arg3: i32, %arg4: i32, %arg5: i32, %arg6: i32): %5 = arith.cmpi sge, %arg3, %arg5 : i32 %6 = arith.select %5, %arg3, %arg5 : i32 %7 = arith.cmpi eq, %arg3, %arg5 : i32 @@ -352,173 +350,3 @@ return %1 : tensor } // CHECK: %{{.+}} = linalg.fill(%{{.+}}, %{{.+}}) : f32, tensor -> tensor - -// ----- - -#accesses_4 = [ - affine_map<(i, j) -> (i, j)>, - affine_map<(i, j) -> (i, j)>, - affine_map<(i, j) -> (i, j)> -] - -#trait_4 = { - indexing_maps = #accesses_4, - iterator_types = ["parallel", "parallel"] -} - -func @tiled_loop(%lhs: tensor<24x64xi8>, %rhs: tensor<24x64xi8>, - %out: tensor<24x64xi8>) -> tensor<24x64xi8> { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c4 = arith.constant 4 : index - %c24 = arith.constant 24 : index - %c64 = arith.constant 64 : index - %prod = linalg.tiled_loop (%i) = (%c0) to (%c24) step (%c4) - ins(%lhs_ = %lhs: tensor<24x64xi8>, %rhs_ = %rhs: tensor<24x64xi8>) - outs(%out_ = %out: tensor<24x64xi8>) { - %lhs_sub = tensor.extract_slice %lhs_[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - %rhs_sub = tensor.extract_slice %rhs_[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - %out_sub = tensor.extract_slice %out_[%i, 0] [%c4, %c64] [1, 1] - : tensor<24x64xi8> to tensor - - %sum = linalg.generic #trait_4 - ins(%lhs_sub, %rhs_sub : tensor, tensor) - outs(%out_sub : tensor) { - ^bb(%l: i8, %r: i8, %o: i8) : - %s = arith.addi %l, %r : i8 - linalg.yield %s : i8 - } -> tensor - - %sum_sub = tensor.insert_slice %sum into %out_[%i, 0][%c4, %c64][1, 1] - : tensor into tensor<24x64xi8> - linalg.yield %sum_sub : tensor<24x64xi8> - } - return %prod : tensor<24x64xi8> -} -// CHECK-LABEL: func @tiled_loop -// CHECK-NOT: iterators[ - -// ----- - -#id_3d = affine_map<(d0, d1, d2) -> (d0, d1, d2)> -#id_2d = affine_map<(d0, d1, d2) -> (d0, d2)> -#id_1d = affine_map<(d0, d1, d2) -> (d1)> - -#trait_5 = { - indexing_maps = [ - #id_3d, - #id_2d, - #id_1d, - #id_1d - ], - iterator_types = ["reduction", "parallel", "reduction"] -} - -func @tiled_loop_reduction(%input_3d: tensor<16x24x32xf32>, - %input_2d: tensor<16x32xf32>, - %input_1d: tensor<24xf32>, - %output: tensor<24xf32>) -> tensor<24xf32> { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c4 = arith.constant 4 : index - %c8 = arith.constant 8 : index - %X = tensor.dim %input_3d, %c0 : tensor<16x24x32xf32> - %Y = tensor.dim %input_3d, %c1 : tensor<16x24x32xf32> - %Z = tensor.dim %input_3d, %c2 : tensor<16x24x32xf32> - %result = linalg.tiled_loop (%i, %j, %k) - = (%c0, %c0, %c0) to (%X, %Y, %Z) step (%c2, %c4, %c8) - ins(%i3d_ = %input_3d: tensor<16x24x32xf32>, - %i2d_ = %input_2d: tensor<16x32xf32>, - %i1d_ = %input_1d: tensor<24xf32>) - outs(%o_ = %output: tensor<24xf32>) - iterators["reduction", "parallel", "reduction"] - distribution["block_x", "block_y", "none"] { - %sub_3d = tensor.extract_slice %i3d_[%i, %j, %k][2, 4, 8][1, 1, 1] - : tensor<16x24x32xf32> to tensor<2x4x8xf32> - %sub_2d = tensor.extract_slice %i2d_[%i, %k][2, 8][1, 1] - : tensor<16x32xf32> to tensor<2x8xf32> - %sub_1d = tensor.extract_slice %i1d_[%j] [4] [1] - : tensor<24xf32> to tensor<4xf32> - %sub_out = tensor.extract_slice %o_[%j] [4] [1] - : tensor<24xf32> to tensor<4xf32> - %acc = linalg.generic #trait_5 - ins(%sub_3d, %sub_2d, %sub_1d - : tensor<2x4x8xf32>, tensor<2x8xf32>, tensor<4xf32>) - outs(%sub_out : tensor<4xf32>) { - ^bb0(%i3d: f32, %i2d: f32, %i1d: f32, %o: f32): - %0 = arith.addf %i3d, %i2d : f32 - %1 = arith.addf %0, %i1d : f32 - linalg.yield %1 : f32 - } -> tensor<4xf32> - - %sum_sub = tensor.insert_slice %acc into %o_[%j][4][1] - : tensor<4xf32> into tensor<24xf32> - linalg.yield %sum_sub : tensor<24xf32> - } - return %result : tensor<24xf32> -} -// CHECK-LABEL: func @tiled_loop_reduction -// CHECK: iterators[ - -// ----- - -#trait_6 = { - indexing_maps = [ - #id_3d, - #id_2d, - #id_1d, - #id_1d - ], - iterator_types = ["reduction", "parallel", "reduction"] -} -#map_1 = affine_map<(d0, d1, d2)[s0] -> (d0 * 768 + s0 + d1 * 32 + d2)> -#map_2 = affine_map<(d0, d1)[s0] -> (d0 * 32 + s0 + d1)> -#map_3 = affine_map<(d0)[s0] -> (d0 + s0)> - -func @tiled_loop_on_buffers(%input_3d: memref<16x24x32xf32>, - %input_2d: memref<16x32xf32>, - %input_1d: memref<24xf32>, - %output: memref<24xf32>) { - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c4 = arith.constant 4 : index - %c8 = arith.constant 8 : index - %X = memref.dim %input_3d, %c0 : memref<16x24x32xf32> - %Y = memref.dim %input_3d, %c1 : memref<16x24x32xf32> - %Z = memref.dim %input_3d, %c2 : memref<16x24x32xf32> - linalg.tiled_loop (%i, %j, %k) = (%c0, %c0, %c0) - to (%X, %Y, %Z) step (%c2, %c4, %c8) - ins(%i3d_ = %input_3d: memref<16x24x32xf32>, - %i2d_ = %input_2d: memref<16x32xf32>, - %i1d_ = %input_1d: memref<24xf32>) - outs(%o_ = %output: memref<24xf32>) - iterators["reduction", "parallel", "reduction"] { - %sub_3d = memref.subview %i3d_[%i, %j, %k][2, 4, 8][1, 1, 1] - : memref<16x24x32xf32> to memref<2x4x8xf32, #map_1> - %sub_2d = memref.subview %i2d_[%i, %k][2, 8][1, 1] - : memref<16x32xf32> to memref<2x8xf32, #map_2> - %sub_1d = memref.subview %i1d_[%j] [4] [1] - : memref<24xf32> to memref<4xf32, #map_3> - %sub_out = memref.subview %o_[%j] [4] [1] - : memref<24xf32> to memref<4xf32, #map_3> - linalg.generic #trait_6 - ins(%sub_3d, %sub_2d, %sub_1d - : memref<2x4x8xf32, #map_1>, - memref<2x8xf32, #map_2>, - memref<4xf32, #map_3>) - outs(%sub_out : memref<4xf32, #map_3>) { - ^bb0(%i3d: f32, %i2d: f32, %i1d: f32, %o: f32): - %0 = arith.addf %i3d, %i2d : f32 - %1 = arith.addf %0, %i1d : f32 - linalg.yield %1 : f32 - } - linalg.yield - } - return -} -// CHECK-LABEL: func @tiled_loop_on_buffers -// CHECK: iterators[ diff --git a/mlir/test/Dialect/Linalg/tile-and-peel-tensors.mlir b/mlir/test/Dialect/Linalg/tile-and-peel-tensors.mlir --- a/mlir/test/Dialect/Linalg/tile-and-peel-tensors.mlir +++ b/mlir/test/Dialect/Linalg/tile-and-peel-tensors.mlir @@ -4,12 +4,6 @@ // RUN: mlir-opt %s -test-linalg-transform-patterns="test-tile-pattern tile-sizes=256,128,512 peeled-loops=1,2" -canonicalize | \ // RUN: FileCheck %s -check-prefix=CHECK-PEEL-12 -// RUN: mlir-opt %s -test-linalg-transform-patterns="test-tile-pattern tile-sizes=256,128,512 loop-type=tiled_loop peeled-loops=0" -canonicalize | \ -// RUN: FileCheck %s -check-prefix=CHECK-TILED-LOOP-PEEL-0 - -// RUN: mlir-opt %s -test-linalg-transform-patterns="test-tile-pattern tile-sizes=256,128,512 loop-type=tiled_loop peeled-loops=0,1" -canonicalize | \ -// RUN: FileCheck %s -check-prefix=CHECK-TILED-LOOP-PEEL-01 - // CHECK-PEEL-0: func @matmul_static_tensor // CHECK-PEEL-0-DAG: %[[c0:.*]] = arith.constant 0 : index // CHECK-PEEL-0-DAG: %[[c128:.*]] = arith.constant 128 : index @@ -51,42 +45,6 @@ // CHECK-PEEL-12: linalg.matmul ins({{.*}} : tensor, tensor) outs({{.*}} : tensor) // CHECK-PEEL-12: } // CHECK-PEEL-12: } - -// CHECK-TILED-LOOP-PEEL-0: func @matmul_static_tensor -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c128:.*]] = arith.constant 128 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c256:.*]] = arith.constant 256 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c512:.*]] = arith.constant 512 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c1280:.*]] = arith.constant 1280 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c1500:.*]] = arith.constant 1500 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c1600:.*]] = arith.constant 1600 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c1700:.*]] = arith.constant 1700 : index -// CHECK-TILED-LOOP-PEEL-0: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %[[c0]], %[[c0]]) to (%[[c1280]], %[[c1700]], %[[c1600]]) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-0: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x?xf32>) -// CHECK-TILED-LOOP-PEEL-0: } -// CHECK-TILED-LOOP-PEEL-0: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c1280]], %[[c0]], %[[c0]]) to (%[[c1500]], %[[c1700]], %[[c1600]]) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-0: linalg.matmul ins({{.*}} : tensor, tensor) outs({{.*}} : tensor) -// CHECK-TILED-LOOP-PEEL-0: } - -// CHECK-TILED-LOOP-PEEL-01: func @matmul_static_tensor -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c128:.*]] = arith.constant 128 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c256:.*]] = arith.constant 256 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c512:.*]] = arith.constant 512 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c1280:.*]] = arith.constant 1280 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c1500:.*]] = arith.constant 1500 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c1600:.*]] = arith.constant 1600 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c1664:.*]] = arith.constant 1664 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c1700:.*]] = arith.constant 1700 : index -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %[[c0]], %[[c0]]) to (%[[c1280]], %[[c1664]], %[[c1600]]) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x128xf32>) -// CHECK-TILED-LOOP-PEEL-01: } -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %[[c1664]], %[[c0]]) to (%[[c1280]], %[[c1700]], %[[c1600]]) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x?xf32>) -// CHECK-TILED-LOOP-PEEL-01: } -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c1280]], %[[c0]], %[[c0]]) to (%[[c1500]], %[[c1700]], %[[c1600]]) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor, tensor) outs({{.*}} : tensor) -// CHECK-TILED-LOOP-PEEL-01: } func @matmul_static_tensor(%arg0: tensor<1500x1600xf32>, %arg1: tensor<1600x1700xf32>) -> tensor<1500x1700xf32> { %out = linalg.init_tensor [1500, 1700] : tensor<1500x1700xf32> @@ -138,33 +96,6 @@ // CHECK-PEEL-12: } // CHECK-PEEL-12: } // CHECK-PEEL-12: } - -// CHECK-TILED-LOOP-PEEL-0: func @matmul_dynamic_tensor -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c128:.*]] = arith.constant 128 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c256:.*]] = arith.constant 256 : index -// CHECK-TILED-LOOP-PEEL-0-DAG: %[[c512:.*]] = arith.constant 512 : index -// CHECK-TILED-LOOP-PEEL-0: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %[[c0]], %[[c0]]) to (%{{.*}}, %{{.*}}, %{{.*}}) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-0: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x?xf32>) -// CHECK-TILED-LOOP-PEEL-0: } -// CHECK-TILED-LOOP-PEEL-0: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%{{.*}}, %[[c0]], %[[c0]]) to (%{{.*}}, %{{.*}}, %{{.*}}) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-0: linalg.matmul ins({{.*}} : tensor, tensor) outs({{.*}} : tensor) -// CHECK-TILED-LOOP-PEEL-0: } - -// CHECK-TILED-LOOP-PEEL-01: func @matmul_dynamic_tensor -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c128:.*]] = arith.constant 128 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c256:.*]] = arith.constant 256 : index -// CHECK-TILED-LOOP-PEEL-01-DAG: %[[c512:.*]] = arith.constant 512 : index -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %[[c0]], %[[c0]]) to (%{{.*}}, %{{.*}}, %{{.*}}) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x128xf32>) -// CHECK-TILED-LOOP-PEEL-01: } -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%[[c0]], %{{.*}}, %[[c0]]) to (%{{.*}}, %{{.*}}, %{{.*}}) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor<256x?xf32>, tensor) outs({{.*}} : tensor<256x?xf32>) -// CHECK-TILED-LOOP-PEEL-01: } -// CHECK-TILED-LOOP-PEEL-01: linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = (%{{.*}}, %[[c0]], %[[c0]]) to (%{{.*}}, %{{.*}}, %{{.*}}) step (%[[c256]], %[[c128]], %[[c512]]) -// CHECK-TILED-LOOP-PEEL-01: linalg.matmul ins({{.*}} : tensor, tensor) outs({{.*}} : tensor) -// CHECK-TILED-LOOP-PEEL-01: } func @matmul_dynamic_tensor(%arg0: tensor, %arg1: tensor) -> tensor { %c0 = arith.constant 0 : index diff --git a/mlir/test/Dialect/Linalg/tile-tensors.mlir b/mlir/test/Dialect/Linalg/tile-tensors.mlir --- a/mlir/test/Dialect/Linalg/tile-tensors.mlir +++ b/mlir/test/Dialect/Linalg/tile-tensors.mlir @@ -1,5 +1,4 @@ // RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4" -split-input-file | FileCheck %s -// RUN: mlir-opt %s -linalg-tile="tile-sizes=2,3,4 loop-type=tiled_loop distribution-types=block_x,block_y,none" -split-input-file | FileCheck %s -check-prefix=TLOOP // CHECK-LABEL: func @matmul_tensors( // CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor @@ -28,39 +27,6 @@ return %0 : tensor } -// TLOOP-LABEL: func @matmul_tensors -// TLOOP-SAME: (%[[ARG_0:.*]]: [[TY:.*]], %[[ARG_1:.*]]: [[TY]], -// TLOOP-SAME: %[[ARG_2:.*]]: [[TY]]) -> [[TY]] { - -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index -// TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index -// TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index -// TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index - -// TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]] -// TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]] -// TLOOP: %[[ARG_1_Y:.*]] = tensor.dim %[[ARG_1]], %[[C1]] : [[TY]] - -// TLOOP: %{{.*}} = linalg.tiled_loop (%[[I:.*]], %[[J:.*]], %[[K:.*]]) = -// TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]]) -// TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_1_Y]], %[[ARG_0_Y]]) -// TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]]) -// TLOOP-SAME: ins (%[[A0:.*]] = %[[ARG_0]]: [[TY]], %[[A1:.*]] = %[[ARG_1]]: [[TY]]) -// TLOOP-SAME: outs (%[[A2:.*]] = %[[ARG_2]]: [[TY]]) -// TLOOP-SAME: iterators["parallel", "parallel", "reduction"] -// TLOOP-SAME: distribution["block_x", "block_y", "none"] { - -// TLOOP: %[[SUB_ARG_0:.*]] = tensor.extract_slice %[[A0]][%[[I]], %[[K]]] -// TLOOP: %[[SUB_ARG_1:.*]] = tensor.extract_slice %[[A1]][%[[K]], %[[J]]] -// TLOOP: %[[SUB_ARG_2:.*]] = tensor.extract_slice %[[A2]][%[[I]], %[[J]]] - -// TLOOP: %[[PROD:.*]] = linalg.matmul ins(%[[SUB_ARG_0]], %[[SUB_ARG_1]] -// TLOOP-SE: outs(%[[SUB_ARG_2]] : [[TY]]) -> [[TY]] - -// TLOOP: %[[O:.*]] = tensor.insert_slice %[[PROD]] into %[[A2]][%[[I]], %[[J]]] -// TLOOP: linalg.yield %[[O]] : [[TY]] - // ----- func @generic_op_tensors( @@ -108,29 +74,6 @@ // CHECK: } // CHECK: return %[[TD0]] -// TLOOP-LABEL: func @generic_op_tensors( -// TLOOP-SAME: %[[ARG_0:.*]]: [[TY:.*]], -// TLOOP-SAME: %[[ARG_1:.*]]: [[TY]]) -> [[TY]] { - -// TLOOP-DAG: %[[C0:.*]] = arith.constant 0 : index -// TLOOP-DAG: %[[C1:.*]] = arith.constant 1 : index -// TLOOP-DAG: %[[C2:.*]] = arith.constant 2 : index -// TLOOP-DAG: %[[C3:.*]] = arith.constant 3 : index -// TLOOP-DAG: %[[C4:.*]] = arith.constant 4 : index - -// TLOOP: %[[INIT:.*]] = linalg.init_tensor -// TLOOP: %[[ARG_0_X:.*]] = tensor.dim %[[ARG_0]], %[[C0]] : [[TY]] -// TLOOP: %[[ARG_0_Y:.*]] = tensor.dim %[[ARG_0]], %[[C1]] : [[TY]] -// TLOOP: %[[ARG_0_Z:.*]] = tensor.dim %[[ARG_0]], %[[C2]] : [[TY]] - -// TLOOP: %{{.*}} = linalg.tiled_loop (%{{.*}}, %{{.*}}, %{{.*}}) = -// TLOOP-SAME: (%[[C0]], %[[C0]], %[[C0]]) -// TLOOP-SAME: to (%[[ARG_0_X]], %[[ARG_0_Y]], %[[ARG_0_Z]]) -// TLOOP-SAME: step (%[[C2]], %[[C3]], %[[C4]]) -// TLOOP-SAME: ins (%{{.*}} = %[[ARG_0]]: [[TY]], %{{.*}} = %[[ARG_1]]: [[TY]]) -// TLOOP-SAME: outs (%{{.*}} = %[[INIT]]: [[TY]]) -// TLOOP-SAME: distribution["block_x", "block_y", "none"] { - // ----- // CHECK-DAG: #[[MAP0:.*]] = affine_map<(d0)[s0] -> (2, -d0 + s0)> diff --git a/mlir/test/Dialect/Linalg/tiled-loop-peeling.mlir b/mlir/test/Dialect/Linalg/tiled-loop-peeling.mlir deleted file mode 100644 --- a/mlir/test/Dialect/Linalg/tiled-loop-peeling.mlir +++ /dev/null @@ -1,231 +0,0 @@ -// RUN: mlir-opt %s -allow-unregistered-dialect -test-linalg-transform-patterns=test-tiled-loop-peeling=2 -split-input-file | FileCheck %s -check-prefix=CHECK-TILE-2 -// RUN: mlir-opt %s -allow-unregistered-dialect -test-linalg-transform-patterns=test-tiled-loop-peeling=0,1,2 -split-input-file | FileCheck %s -check-prefix=CHECK-TILE-012 -// RUN: mlir-opt %s -allow-unregistered-dialect -test-linalg-transform-patterns="test-tiled-loop-peeling=0,1,2 skip-partial" -split-input-file | FileCheck %s -check-prefix=CHECK-TILE-012-SKIP-PARTIAL - -// CHECK-TILE-2-LABEL: func @tiled_loop_3d_tensor( -// CHECK-TILE-2-SAME: %[[input:.*]]: tensor, %[[s0:.*]]: index, %[[s1:.*]]: index, %[[s2:.*]]: index -// CHECK-TILE-2-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILE-2-DAG: %[[c1:.*]] = arith.constant 1 : index -// CHECK-TILE-2-DAG: %[[c2:.*]] = arith.constant 2 : index -// CHECK-TILE-2: %[[dim0:.*]] = tensor.dim %[[input]], %[[c0]] -// CHECK-TILE-2: %[[dim1:.*]] = tensor.dim %[[input]], %[[c1]] -// CHECK-TILE-2: %[[dim2:.*]] = tensor.dim %[[input]], %[[c2]] -// CHECK-TILE-2: %[[init_tensor:.*]] = linalg.init_tensor -// CHECK-TILE-2: %[[split_bound:.*]] = affine.apply -// CHECK-TILE-2: %[[r1:.*]] = linalg.tiled_loop (%[[iv0:.*]], %[[iv1:.*]], %[[iv2:.*]]) = (%[[c0]], %[[c0]], %[[c0]]) -// CHECK-TILE-2-SAME: to (%[[dim0]], %[[dim1]], %[[split_bound]]) -// CHECK-TILE-2-SAME: step (%[[s0]], %[[s1]], %[[s2]]) -// CHECK-TILE-2-SAME: ins (%[[loop_in1:.*]] = %[[input]]: tensor) -// CHECK-TILE-2-SAME: outs (%[[loop_out1:.*]] = %[[init_tensor]]: tensor) { -// CHECK-TILE-2: %[[min0_1:.*]] = affine.min -// CHECK-TILE-2: %[[min1_1:.*]] = affine.min -// CHECK-TILE-2: %[[in_slice1:.*]] = tensor.extract_slice %[[loop_in1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_1]], %[[min1_1]], %[[s2]]] -// CHECK-TILE-2: %[[out_slice1:.*]] = tensor.extract_slice %[[loop_out1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_1]], %[[min1_1]], %[[s2]]] -// CHECK-TILE-2: %[[mod_slice1:.*]] = tensor.insert_slice %{{.*}} into %[[loop_out1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_1]], %[[min1_1]], %[[s2]]] -// CHECK-TILE-2: linalg.yield %[[mod_slice1]] -// CHECK-TILE-2: %[[r2:.*]] = linalg.tiled_loop (%[[iv0:.*]], %[[iv1:.*]], %[[iv2:.*]]) = (%[[c0]], %[[c0]], %[[split_bound]]) -// CHECK-TILE-2-SAME: to (%[[dim0]], %[[dim1]], %[[dim2]]) -// CHECK-TILE-2-SAME: step (%[[s0]], %[[s1]], %[[s2]]) -// CHECK-TILE-2-SAME: ins (%[[loop_in2:.*]] = %[[input]]: tensor) -// CHECK-TILE-2-SAME: outs (%[[loop_out2:.*]] = %[[r1]]: tensor) { -// CHECK-TILE-2: %[[min0_2:.*]] = affine.min -// CHECK-TILE-2: %[[min1_2:.*]] = affine.min -// CHECK-TILE-2: %[[apply2:.*]] = affine.apply -// CHECK-TILE-2: %[[in_slice2:.*]] = tensor.extract_slice %[[loop_in1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_2]], %[[min1_2]], %[[apply2]]] -// CHECK-TILE-2: %[[out_slice2:.*]] = tensor.extract_slice %[[loop_out1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_2]], %[[min1_2]], %[[apply2]]] -// CHECK-TILE-2: %[[mod_slice2:.*]] = tensor.insert_slice %{{.*}} into %[[loop_out1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_2]], %[[min1_2]], %[[apply2]]] -// CHECK-TILE-2: linalg.yield %[[mod_slice2]] -// CHECK-TILE-2: return %[[r2]] - -// CHECK-TILE-012-LABEL: func @tiled_loop_3d_tensor -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012: linalg.tiled_loop {{.*}} { -// CHECK-TILE-012: linalg.yield -// CHECK-TILE-012: } -// CHECK-TILE-012-NOT: linalg.tiled_loop - -// CHECK-TILE-012-SKIP-PARTIAL: func @tiled_loop_3d_tensor( -// CHECK-TILE-012-SKIP-PARTIAL-SAME: %[[input:.*]]: tensor -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[c1:.*]] = arith.constant 1 : index -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[c2:.*]] = arith.constant 2 : index -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[dim0:.*]] = tensor.dim %[[input]], %[[c0]] -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[dim1:.*]] = tensor.dim %[[input]], %[[c1]] -// CHECK-TILE-012-SKIP-PARTIAL-DAG: %[[dim2:.*]] = tensor.dim %[[input]], %[[c2]] -// CHECK-TILE-012-SKIP-PARTIAL: %[[p0:.*]] = affine.apply #{{.*}}()[%[[dim0]] -// CHECK-TILE-012-SKIP-PARTIAL: %[[p1:.*]] = affine.apply #{{.*}}()[%[[dim1]] -// CHECK-TILE-012-SKIP-PARTIAL: %[[p2:.*]] = affine.apply #{{.*}}()[%[[dim2]] -// CHECK-TILE-012-SKIP-PARTIAL: linalg.tiled_loop {{.*}} = (%[[c0]], %[[c0]], %[[c0]]) to (%[[p0]], %[[p1]], %[[p2]]) -// CHECK-TILE-012-SKIP-PARTIAL: linalg.tiled_loop {{.*}} = (%[[c0]], %[[c0]], %[[p2]]) to (%[[p0]], %[[p1]], %[[dim2]]) -// CHECK-TILE-012-SKIP-PARTIAL: linalg.tiled_loop {{.*}} = (%[[c0]], %[[p1]], %[[c0]]) to (%[[p0]], %[[dim1]], %[[dim2]]) -// CHECK-TILE-012-SKIP-PARTIAL: linalg.tiled_loop {{.*}} = (%[[p0]], %[[c0]], %[[c0]]) to (%[[dim0]], %[[dim1]], %[[dim2]]) -func @tiled_loop_3d_tensor(%arg0: tensor, %s0: index, %s1: index, - %s2: index) -> tensor { - %cst = arith.constant 0.000000e+00 : f32 - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c8 = arith.constant 8 : index - %dim0 = tensor.dim %arg0, %c0 : tensor - %dim1 = tensor.dim %arg0, %c1 : tensor - %dim2 = tensor.dim %arg0, %c2 : tensor - %output = linalg.init_tensor [%dim0, %dim1, %dim2] : tensor - %result = linalg.tiled_loop - (%arg1, %arg2, %arg3) = (%c0, %c0, %c0) to (%dim0, %dim1, %dim2) - step (%s0, %s1, %s2) ins (%arg4 = %arg0: tensor) - outs (%arg5 = %output: tensor) { - %min0 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg1, %s0)[%dim0] - %min1 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg2, %s1)[%dim1] - %min2 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg3, %s2)[%dim2] - %in_slice = tensor.extract_slice %arg4[%arg1, %arg2, %arg3] [%min0, %min1, %min2] [1, 1, 1]: tensor to tensor - %out_slice = tensor.extract_slice %arg5[%arg1, %arg2, %arg3] [%min0, %min1, %min2] [1, 1, 1] : tensor to tensor - %comp = "computation"(%in_slice, %out_slice) : (tensor, tensor) -> tensor - %updated_slice = tensor.insert_slice %comp into %arg5[%arg1, %arg2, %arg3] [%min0, %min1, %min2] [1, 1, 1] : tensor into tensor - linalg.yield %updated_slice : tensor - } - return %result : tensor -} - -// ----- - -// CHECK-TILE-2-LABEL: func @tiled_loop_3d_memref( -// CHECK-TILE-2-SAME: %[[input:.*]]: memref, %[[output:.*]]: memref, %[[s0:.*]]: index, %[[s1:.*]]: index, %[[s2:.*]]: index -// CHECK-TILE-2-DAG: %[[c0:.*]] = arith.constant 0 : index -// CHECK-TILE-2-DAG: %[[c1:.*]] = arith.constant 1 : index -// CHECK-TILE-2-DAG: %[[c2:.*]] = arith.constant 2 : index -// CHECK-TILE-2: %[[dim0:.*]] = memref.dim %[[input]], %[[c0]] -// CHECK-TILE-2: %[[dim1:.*]] = memref.dim %[[input]], %[[c1]] -// CHECK-TILE-2: %[[dim2:.*]] = memref.dim %[[input]], %[[c2]] -// CHECK-TILE-2: %[[split_bound:.*]] = affine.apply -// CHECK-TILE-2: linalg.tiled_loop (%[[iv0:.*]], %[[iv1:.*]], %[[iv2:.*]]) = (%[[c0]], %[[c0]], %[[c0]]) -// CHECK-TILE-2-SAME: to (%[[dim0]], %[[dim1]], %[[split_bound]]) -// CHECK-TILE-2-SAME: step (%[[s0]], %[[s1]], %[[s2]]) -// CHECK-TILE-2-SAME: ins (%[[loop_in1:.*]] = %[[input]]: memref) -// CHECK-TILE-2-SAME: outs (%[[loop_out1:.*]] = %[[output]]: memref) { -// CHECK-TILE-2: %[[min0_1:.*]] = affine.min -// CHECK-TILE-2: %[[min1_1:.*]] = affine.min -// CHECK-TILE-2: memref.subview %[[loop_in1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_1]], %[[min1_1]], %[[s2]]] -// CHECK-TILE-2: linalg.yield -// CHECK-TILE-2: linalg.tiled_loop (%[[iv0:.*]], %[[iv1:.*]], %[[iv2:.*]]) = (%[[c0]], %[[c0]], %[[split_bound]]) -// CHECK-TILE-2-SAME: to (%[[dim0]], %[[dim1]], %[[dim2]]) -// CHECK-TILE-2-SAME: step (%[[s0]], %[[s1]], %[[s2]]) -// CHECK-TILE-2-SAME: ins (%[[loop_in2:.*]] = %[[input]]: memref) -// CHECK-TILE-2-SAME: outs (%[[loop_out2:.*]] = %[[output]]: memref) { -// CHECK-TILE-2: %[[min0_2:.*]] = affine.min -// CHECK-TILE-2: %[[min1_2:.*]] = affine.min -// CHECK-TILE-2: %[[apply2:.*]] = affine.apply -// CHECK-TILE-2: memref.subview %[[loop_in1]][%[[iv0]], %[[iv1]], %[[iv2]]] [%[[min0_2]], %[[min1_2]], %[[apply2]]] -// CHECK-TILE-2: linalg.yield -// CHECK-TILE-2: return - -// CHECK-TILE-012-LABEL: func @tiled_loop_3d_memref - -!memref_subview_type = type memref (d0 * s1 + s0 + d1 * s2 + d2)>> - -func @tiled_loop_3d_memref(%arg0: memref, %output: memref, - %s0: index, %s1: index, %s2: index) { - %cst = arith.constant 0.000000e+00 : f32 - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c8 = arith.constant 8 : index - %dim0 = memref.dim %arg0, %c0 : memref - %dim1 = memref.dim %arg0, %c1 : memref - %dim2 = memref.dim %arg0, %c2 : memref - linalg.tiled_loop - (%arg1, %arg2, %arg3) = (%c0, %c0, %c0) to (%dim0, %dim1, %dim2) - step (%s0, %s1, %s2) ins (%arg4 = %arg0: memref) - outs (%arg5 = %output : memref) { - %min0 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg1, %s0)[%dim0] - %min1 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg2, %s1)[%dim1] - %min2 = affine.min affine_map<(d0, d1)[s0] -> (d1, -d0 + s0)>(%arg3, %s2)[%dim2] - %in_slice = memref.subview %arg4[%arg1, %arg2, %arg3] [%min0, %min1, %min2] [1, 1, 1]: memref to !memref_subview_type - "computation"(%in_slice) : (!memref_subview_type) -> memref - linalg.yield - } - return -} - -// ----- - -// CHECK-TILE-2-LABEL: func @step_1_do_not_peel -// CHECK-TILE-2: linalg.tiled_loop -// CHECK-TILE-2-NOT: linalg.tiled_loop - -// CHECK-TILE-012-LABEL: func @step_1_do_not_peel - -func @step_1_do_not_peel(%arg0: tensor) -> tensor { - %cst = arith.constant 0.000000e+00 : f32 - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c8 = arith.constant 8 : index - %dim0 = tensor.dim %arg0, %c0 : tensor - %dim1 = tensor.dim %arg0, %c1 : tensor - %dim2 = tensor.dim %arg0, %c2 : tensor - %output = linalg.init_tensor [%dim0, %dim1, %dim2] : tensor - %result = linalg.tiled_loop - (%arg1, %arg2, %arg3) = (%c0, %c0, %c0) to (%dim0, %dim1, %dim2) - step (%c1, %c1, %c1) ins (%arg4 = %arg0: tensor) - outs (%arg5 = %output: tensor) { - %in_slice = tensor.extract_slice %arg4[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1]: tensor to tensor - %out_slice = tensor.extract_slice %arg5[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1] : tensor to tensor - %comp = "computation"(%in_slice, %out_slice) : (tensor, tensor) -> tensor - %updated_slice = tensor.insert_slice %comp into %arg5[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1] : tensor into tensor - linalg.yield %updated_slice : tensor - } - return %result : tensor -} - -// ----- - -// CHECK-TILE-2-LABEL: func @divides_evenly_do_not_peel -// CHECK-TILE-2: linalg.tiled_loop -// CHECK-TILE-2-NOT: linalg.tiled_loop - -// CHECK-TILE-012-LABEL: func @divides_evenly_do_not_peel - -func @divides_evenly_do_not_peel(%arg0: tensor, %s: index) - -> tensor { - %cst = arith.constant 0.000000e+00 : f32 - %c0 = arith.constant 0 : index - %c1 = arith.constant 1 : index - %c2 = arith.constant 2 : index - %c8 = arith.constant 8 : index - %c64 = arith.constant 64 : index - %dim0 = tensor.dim %arg0, %c0 : tensor - %dim1 = tensor.dim %arg0, %c1 : tensor - %dim2 = tensor.dim %arg0, %c2 : tensor - %output = linalg.init_tensor [%dim0, %dim1, %dim2] : tensor - %result = linalg.tiled_loop - (%arg1, %arg2, %arg3) = (%c0, %c0, %c0) to (%dim0, %dim1, %c64) - step (%s, %s, %c8) ins (%arg4 = %arg0: tensor) - outs (%arg5 = %output: tensor) { - %in_slice = tensor.extract_slice %arg4[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1]: tensor to tensor - %out_slice = tensor.extract_slice %arg5[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1] : tensor to tensor - %comp = "computation"(%in_slice, %out_slice) : (tensor, tensor) -> tensor - %updated_slice = tensor.insert_slice %comp into %arg5[%arg1, %arg2, %arg3] [%c1, %c1, %c1] [1, 1, 1] : tensor into tensor - linalg.yield %updated_slice : tensor - } - return %result : tensor -} diff --git a/mlir/test/Dialect/Linalg/tiled-loop-to-scf.mlir b/mlir/test/Dialect/Linalg/tiled-loop-to-scf.mlir deleted file mode 100644 --- a/mlir/test/Dialect/Linalg/tiled-loop-to-scf.mlir +++ /dev/null @@ -1,184 +0,0 @@ -// RUN: mlir-opt %s -convert-linalg-tiled-loops-to-scf --split-input-file | FileCheck %s - - -#map0 = affine_map<(d0) -> (24, -d0 + 192)> -#map1 = affine_map<(d0, d1)[s0] -> (d0 * 192 + s0 + d1)> -#map2 = affine_map<(d0) -> (16, -d0 + 192)> - -func @tiled_loop(%A: memref<192x192xf32>, - %B: memref<192x192xf32>, - %C: memref<192x192xf32>) { - %cst = arith.constant 0.000000e+00 : f32 - %c24 = arith.constant 24 : index - %c16 = arith.constant 16 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - - linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c192, %c192) step (%c24, %c16) - ins (%A_ = %A: memref<192x192xf32>, %B_ = %B: memref<192x192xf32>) - outs (%C_ = %C: memref<192x192xf32>) { - %0 = affine.min #map0(%i) - %1 = memref.subview %A_[%i, 0] [%0, 192] [1, 1] - : memref<192x192xf32> to memref - %2 = affine.min #map2(%j) - %3 = memref.subview %B_[0, %j] [192, %2] [1, 1] - : memref<192x192xf32> to memref<192x?xf32, #map1> - %4 = memref.subview %C_[%i, %j] [%0, %2] [1, 1] - : memref<192x192xf32> to memref - linalg.fill(%cst, %4) : f32, memref - linalg.matmul ins(%1, %3 : memref, - memref<192x?xf32, #map1>) - outs(%4 : memref) - linalg.yield - } - return -} - -// CHECK-LABEL: @tiled_loop -// CHECK-SAME: %[[A:.*]]: memref<192x192xf32>, %[[B:.*]]: memref<192x192xf32>, -// CHECK-SAME: %[[C:.*]]: memref<192x192xf32>) { -// CHECK: %[[C24:.*]] = arith.constant 24 : index -// CHECK: %[[C16:.*]] = arith.constant 16 : index -// CHECK: %[[C0:.*]] = arith.constant 0 : index -// CHECK: %[[C192:.*]] = arith.constant 192 : index -// CHECK: scf.parallel (%[[I:.*]], %[[J:.*]]) = (%[[C0]], %[[C0]]) -// CHECK-SAME: to (%[[C192]], %[[C192]]) step (%[[C24]], %[[C16]]) { -// CHECK: %[[A_sub:.*]] = memref.subview %[[A]][%[[I]] -// CHECK: %[[B_sub:.*]] = memref.subview %[[B]][0, %[[J]]] -// CHECK: %[[C_sub:.*]] = memref.subview %[[C]][%[[I]] -// CHECK: linalg.fill -// CHECK: linalg.matmul - -// ----- - -func @tiled_loop_reduction(%A: memref<192x192xf32>, - %B: memref<192x192xf32>, - %C: memref) { - %c24 = arith.constant 24 : index - %c16 = arith.constant 16 : index - %c0 = arith.constant 0 : index - %c192 = arith.constant 192 : index - %cst = arith.constant 0.000000e+00 : f32 - - linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c192, %c192) step (%c24, %c16) - ins (%A_ = %A: memref<192x192xf32>, %B_ = %B: memref<192x192xf32>) - outs (%C_ = %C: memref) - iterators["reduction", "reduction"] { - linalg.fill(%cst, %A_) : f32, memref<192x192xf32> - linalg.yield - } - return -} - -// CHECK-LABEL: @tiled_loop_reduction -// CHECK: %[[C24:.*]] = arith.constant 24 : index -// CHECK: %[[C16:.*]] = arith.constant 16 : index -// CHECK: %[[C0:.*]] = arith.constant 0 : index -// CHECK: %[[C192:.*]] = arith.constant 192 : index -// CHECK: scf.for %{{.*}} = %[[C0]] to %[[C192]] step %[[C24]] -// CHECK: scf.for %{{.*}} = %[[C0]] to %[[C192]] step %[[C16]] -// CHECK: linalg.fill - -// ----- - -#strided_1d = affine_map<(d0)[s0] -> (d0 + s0)> -#strided_2d = affine_map<(d0, d1)[s0] -> (d0 * 8 + s0 + d1)> - -func @tiled_loop_row_reduction(%A: memref<10x8xf32>, - %B: memref<8xf32>) { - %c0 = arith.constant 0 : index - %c2 = arith.constant 2 : index - %c4 = arith.constant 4 : index - %c8 = arith.constant 8 : index - %c10 = arith.constant 10 : index - %cst = arith.constant 0.000000e+00 : f32 - - linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c10, %c8) step (%c2, %c4) - ins (%A_ = %A: memref<10x8xf32>) - outs (%B_ = %B: memref<8xf32>) - iterators["reduction", "parallel"] { - %A_sub = memref.subview %A_[%i, %j][2, 4][1, 1] - : memref<10x8xf32> to memref<2x4xf32, #strided_2d> - %B_sub = memref.subview %B_[%j][4][1] - : memref<8xf32> to memref<4xf32, #strided_1d> - linalg.generic { - indexing_maps = [affine_map<(i, j) -> (i, j)>, - affine_map<(i, j) -> (j)>], - iterator_types = ["reduction", "parallel"]} - ins(%A_sub : memref<2x4xf32, #strided_2d>) - outs(%B_sub : memref<4xf32, #strided_1d>) { - ^bb(%a: f32, %b: f32) : - %0 = arith.addf %a, %b: f32 - linalg.yield %0 : f32 - } - linalg.yield - } - return -} - -// CHECK-LABEL: @tiled_loop_row_reduction - -// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index -// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index -// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index -// CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index - -// CHECK: scf.parallel (%[[J:.*]]) = (%[[C0]]) to (%[[C8]]) step (%[[C4]]) -// CHECK-NEXT: scf.for %[[I:.*]] = %[[C0]] to %[[C10]] step %[[C2]] -// CHECK-NEXT: memref.subview %arg{{[0-9]+}}[%[[I]], %[[J]]] [2, 4] [1, 1] -// CHECK-SAME: : memref<10x8xf32> to memref<2x4xf32, #map{{[0-9]+}}> -// CHECK-NEXT: memref.subview %arg{{[0-9]+}}[%[[J]]] [4] [1] -// CHECK-SAME: : memref<8xf32> to memref<4xf32, #map{{[0-9]+}}> - -// ----- - -#strided_1d = affine_map<(d0)[s0] -> (d0 + s0)> -#strided_2d = affine_map<(d0, d1)[s0] -> (d0 * 8 + s0 + d1)> - -func @tiled_loop_col_reduction(%A: memref<10x8xf32>, - %B: memref<10xf32>) { - %c0 = arith.constant 0 : index - %c2 = arith.constant 2 : index - %c4 = arith.constant 4 : index - %c8 = arith.constant 8 : index - %c10 = arith.constant 10 : index - %cst = arith.constant 0.000000e+00 : f32 - - linalg.tiled_loop (%i, %j) = (%c0, %c0) to (%c10, %c8) step (%c2, %c4) - ins (%A_ = %A: memref<10x8xf32>) - outs (%B_ = %B: memref<10xf32>) - iterators["parallel", "reduction"] { - %A_sub = memref.subview %A_[%i, %j][2, 4][1, 1] - : memref<10x8xf32> to memref<2x4xf32, #strided_2d> - %B_sub = memref.subview %B_[%i][2][1] - : memref<10xf32> to memref<2xf32, #strided_1d> - linalg.generic { - indexing_maps = [affine_map<(i, j) -> (i, j)>, - affine_map<(i, j) -> (i)>], - iterator_types = ["parallel", "reduction"]} - ins(%A_sub : memref<2x4xf32, #strided_2d>) - outs(%B_sub : memref<2xf32, #strided_1d>) { - ^bb(%a: f32, %b: f32) : - %0 = arith.addf %a, %b: f32 - linalg.yield %0 : f32 - } - linalg.yield - } - return -} - -// CHECK-LABEL: @tiled_loop_col_reduction - -// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index -// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index -// CHECK-DAG: %[[C4:.*]] = arith.constant 4 : index -// CHECK-DAG: %[[C8:.*]] = arith.constant 8 : index -// CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index - -// CHECK: scf.parallel (%[[I:.*]]) = (%[[C0]]) to (%[[C10]]) step (%[[C2]]) -// CHECK-NEXT: scf.for %[[J:.*]] = %[[C0]] to %[[C8]] step %[[C4]] -// CHECK-NEXT: memref.subview %arg{{[0-9]+}}[%[[I]], %[[J]]] [2, 4] [1, 1] -// CHECK-SAME: : memref<10x8xf32> to memref<2x4xf32, #map{{[0-9]+}}> -// CHECK-NEXT: memref.subview %arg{{[0-9]+}}[%[[I]]] [2] [1] -// CHECK-SAME: : memref<10xf32> to memref<2xf32, #map{{[0-9]+}}> diff --git a/mlir/test/lib/Dialect/Linalg/CMakeLists.txt b/mlir/test/lib/Dialect/Linalg/CMakeLists.txt --- a/mlir/test/lib/Dialect/Linalg/CMakeLists.txt +++ b/mlir/test/lib/Dialect/Linalg/CMakeLists.txt @@ -2,7 +2,6 @@ add_mlir_library(MLIRLinalgTestPasses TestComprehensiveBufferize.cpp TestLinalgCodegenStrategy.cpp - TestLinalgDistribution.cpp TestLinalgElementwiseFusion.cpp TestLinalgFusionTransforms.cpp TestLinalgHoisting.cpp diff --git a/mlir/test/lib/Dialect/Linalg/TestLinalgDistribution.cpp b/mlir/test/lib/Dialect/Linalg/TestLinalgDistribution.cpp deleted file mode 100644 --- a/mlir/test/lib/Dialect/Linalg/TestLinalgDistribution.cpp +++ /dev/null @@ -1,79 +0,0 @@ -//===- TestLinalgDistribution.cpp - Test Linalg hoisting functions --------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements logic for testing Linalg hoisting functions. -// -//===----------------------------------------------------------------------===// - -#include "mlir/Dialect/GPU/GPUDialect.h" -#include "mlir/Dialect/Linalg/IR/Linalg.h" -#include "mlir/Dialect/Linalg/Transforms/Transforms.h" -#include "mlir/Pass/Pass.h" -#include "mlir/Transforms/GreedyPatternRewriteDriver.h" - -using namespace mlir; -using namespace mlir::linalg; - -template -static linalg::ProcInfo getGpuBlockInfo(OpBuilder &b, Location loc) { - Type indexType = b.getIndexType(); - ProcInfo procInfo = {b.create(loc, indexType, Dim), - b.create(loc, indexType, Dim)}; - return procInfo; -} - -static LinalgLoopDistributionOptions getDistributionOptions() { - LinalgLoopDistributionOptions opts; - opts.procInfoMap.insert( - std::make_pair("block_x", getGpuBlockInfo)); - opts.procInfoMap.insert( - std::make_pair("block_y", getGpuBlockInfo)); - return opts; -} - -namespace { -struct TestLinalgDistribution - : public PassWrapper> { - StringRef getArgument() const final { return "test-linalg-distribution"; } - StringRef getDescription() const final { return "Test Linalg distribution."; } - TestLinalgDistribution() = default; - TestLinalgDistribution(const TestLinalgDistribution &pass) = default; - void getDependentDialects(DialectRegistry ®istry) const override { - registry.insert(); - } - - void runOnOperation() override; -}; -} // namespace - -void TestLinalgDistribution::runOnOperation() { - auto funcOp = getOperation(); - RewritePatternSet distributeTiledLoopsPatterns(&getContext()); - populateLinalgDistributeTiledLoopPattern( - distributeTiledLoopsPatterns, getDistributionOptions(), - LinalgTransformationFilter( - ArrayRef{}, - {StringAttr::get(funcOp.getContext(), "distributed")}) - .addFilter([](Operation *op) { - return success(!op->getParentOfType()); - })); - (void)applyPatternsAndFoldGreedily(funcOp, - std::move(distributeTiledLoopsPatterns)); - // Ensure we drop the marker in the end. - funcOp.walk([](LinalgOp op) { - op->removeAttr(LinalgTransforms::kLinalgTransformMarker); - }); -} - -namespace mlir { -namespace test { -void registerTestLinalgDistribution() { - PassRegistration(); -} -} // namespace test -} // namespace mlir diff --git a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp --- a/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp +++ b/mlir/test/lib/Dialect/Linalg/TestLinalgTransforms.cpp @@ -116,10 +116,6 @@ *this, "tile-sizes", llvm::cl::desc("Linalg tile sizes for test-tile-pattern"), llvm::cl::ZeroOrMore, llvm::cl::MiscFlags::CommaSeparated}; - ListOption testTiledLoopPeeling{ - *this, "test-tiled-loop-peeling", - llvm::cl::desc("Test peeling of linalg.tiled_loop ops"), - llvm::cl::OneOrMore, llvm::cl::MiscFlags::CommaSeparated}; Option skipPartial{ *this, "skip-partial", llvm::cl::desc("Skip loops inside partial iterations during peeling"), @@ -586,8 +582,7 @@ llvm::StringSwitch(loopType) .Case("for", LinalgTilingLoopType::Loops) .Case("affine", LinalgTilingLoopType::AffineLoops) - .Case("parallel", LinalgTilingLoopType::ParallelLoops) - .Case("tiled_loop", LinalgTilingLoopType::TiledLoops); + .Case("parallel", LinalgTilingLoopType::ParallelLoops); auto linalgTilingOptions = linalg::LinalgTilingOptions() .setPeeledLoops(peeledLoops) .setLoopType(type); @@ -607,76 +602,6 @@ static constexpr char kPeeledLoopsLabel[] = "__peeled_loops__"; static constexpr char kPartialIterationLabel[] = "__partial_iteration__"; -namespace { -/// Peel TiledLoopOps, i.e., split them into two loops: One loop where the -/// `idx`-th loop contains only "full" iterations and a second loop for the -/// remaining partial iteration (if any). -struct TiledLoopPeelingPattern : public OpRewritePattern { - TiledLoopPeelingPattern(MLIRContext *ctx, int64_t idx, bool skipPartial) - : OpRewritePattern(ctx), idx(idx), skipPartial(skipPartial) { - } - - LogicalResult matchAndRewrite(TiledLoopOp loopOp, - PatternRewriter &rewriter) const override { - SmallVector peeledLoops; - if (loopOp->hasAttr(kPeeledLoopsLabel)) { - auto attr = loopOp->getAttr(kPeeledLoopsLabel).cast(); - peeledLoops = - llvm::to_vector<4>(llvm::map_range(attr, [](Attribute attr) { - return attr.cast().getInt(); - })); - // Check if the loop was already peeled. - if (llvm::find(peeledLoops, idx) != peeledLoops.end()) - return failure(); - } - if (skipPartial && loopOp->hasAttr(kPartialIterationLabel)) - // No peeling of loop nests with a partial iteration. - return failure(); - - if (static_cast(loopOp.iterator_types().size()) <= idx) - return failure(); - - // Peel loop and canonicalize. - TiledLoopOp result; - if (failed(linalg::peelAndCanonicalizeTiledLoop(rewriter, loopOp, idx, - result))) - return failure(); - - // Apply label, so that the same loop is not rewritten a second time. - peeledLoops.push_back(idx); - rewriter.updateRootInPlace(loopOp, [&]() { - loopOp->setAttr(kPeeledLoopsLabel, rewriter.getI64ArrayAttr(peeledLoops)); - }); - result->setAttr(kPeeledLoopsLabel, rewriter.getI64ArrayAttr(peeledLoops)); - result->setAttr(kPartialIterationLabel, rewriter.getUnitAttr()); - - return success(); - } - - /// Index of loop to peel. - int64_t idx; - - /// If set to true, do not peel TiledLoopOps with a partial iteration. - bool skipPartial; -}; -} // namespace - -static void applyTiledLoopPeelingPattern(FuncOp funcOp, - ArrayRef loops, - bool skipPartial) { - MLIRContext *ctx = funcOp.getContext(); - RewritePatternSet patterns(ctx); - for (unsigned idx : loops) - patterns.add(ctx, idx, skipPartial); - (void)applyPatternsAndFoldGreedily(funcOp, std::move(patterns)); - - // Drop the markers. - funcOp.walk([](TiledLoopOp op) { - op->removeAttr(kPeeledLoopsLabel); - op->removeAttr(kPartialIterationLabel); - }); -} - /// Apply transformations specified as patterns. void TestLinalgTransforms::runOnOperation() { auto lambda = [&](void *) { @@ -714,9 +639,6 @@ return applyGeneralizePadTensorPatterns(getOperation()); if (testSwapSubTensorPadTensor) return applyExtractSliceOfPadTensorSwapPattern(getOperation()); - if (testTiledLoopPeeling.hasValue()) - return applyTiledLoopPeelingPattern(getOperation(), testTiledLoopPeeling, - skipPartial); if (testTilePattern) return applyTilePattern(getOperation(), loopType, tileSizes, peeledLoops, /*scalarizeDynamicDims=*/false); diff --git a/mlir/tools/mlir-opt/mlir-opt.cpp b/mlir/tools/mlir-opt/mlir-opt.cpp --- a/mlir/tools/mlir-opt/mlir-opt.cpp +++ b/mlir/tools/mlir-opt/mlir-opt.cpp @@ -81,7 +81,6 @@ void registerTestGenericIRVisitorsInterruptPass(); void registerTestInterfaces(); void registerTestLinalgCodegenStrategy(); -void registerTestLinalgDistribution(); void registerTestLinalgElementwiseFusion(); void registerTestLinalgFusionTransforms(); void registerTestLinalgTensorFusionTransforms(); @@ -170,7 +169,6 @@ mlir::test::registerTestGenericIRVisitorsPass(); mlir::test::registerTestInterfaces(); mlir::test::registerTestLinalgCodegenStrategy(); - mlir::test::registerTestLinalgDistribution(); mlir::test::registerTestLinalgElementwiseFusion(); mlir::test::registerTestLinalgFusionTransforms(); mlir::test::registerTestLinalgTensorFusionTransforms();