Index: lib/Analysis/BasicAliasAnalysis.cpp =================================================================== --- lib/Analysis/BasicAliasAnalysis.cpp +++ lib/Analysis/BasicAliasAnalysis.cpp @@ -166,20 +166,26 @@ //===----------------------------------------------------------------------===// namespace { - enum ExtensionKind { - EK_NotExtended, - EK_SignExt, - EK_ZeroExt - }; + // A linear transformation of a Value; this class represents ZExt(SExt(V, + // SExtBits), ZExtBits) * Scale + Offset. struct VariableGEPIndex { + + // An opaque Value - we can't decompose this further. const Value *V; - ExtensionKind Extension; + + // We need to track what extensions we've done as we consider the same Value + // with different extensions as different variables in a GEP's linear + // expression; + // e.g.: if V == -1, then sext(x) != zext(x). + unsigned ZExtBits; + unsigned SExtBits; + int64_t Scale; bool operator==(const VariableGEPIndex &Other) const { - return V == Other.V && Extension == Other.Extension && - Scale == Other.Scale; + return V == Other.V && ZExtBits == Other.ZExtBits && + SExtBits == Other.SExtBits && Scale == Other.Scale; } bool operator!=(const VariableGEPIndex &Other) const { @@ -197,10 +203,12 @@ /// /// Note that this looks through extends, so the high bits may not be /// represented in the result. -static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset, - ExtensionKind &Extension, - const DataLayout &DL, unsigned Depth, - AssumptionCache *AC, DominatorTree *DT) { +static const Value *GetLinearExpression(const Value *V, APInt &Scale, + APInt &Offset, unsigned &ZExtBits, + unsigned &SExtBits, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, DominatorTree *DT, + bool &NSW, bool &NUW) { assert(V->getType()->isIntegerTy() && "Not an integer value"); // Limit our recursion depth. @@ -210,65 +218,125 @@ return V; } - if (ConstantInt *Const = dyn_cast(V)) { - // if it's a constant, just convert it to an offset - // and remove the variable. - Offset += Const->getValue(); + if (const ConstantInt *Const = dyn_cast(V)) { + // if it's a constant, just convert it to an offset and remove the variable. + // If we've been called recursively the Offset bit width will be greater + // than the constant's (the Offset's always as wide as the outermost call), + // so we'll zext here and process any extension in the isa & + // isa cases below. + Offset += Const->getValue().zextOrSelf(Offset.getBitWidth()); assert(Scale == 0 && "Constant values don't have a scale"); return V; } - if (BinaryOperator *BOp = dyn_cast(V)) { + if (const BinaryOperator *BOp = dyn_cast(V)) { if (ConstantInt *RHSC = dyn_cast(BOp->getOperand(1))) { + + // If we've been called recursively then Offset and Scale will be wider + // that the BOp operands. We'll always zext it here as we'll process sign + // extensions below (see the isa / isa cases). + APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth()); + switch (BOp->getOpcode()) { - default: break; + default: + // We don't understand this instruction, so we can't decompose it any + // further. + Scale = 1; + Offset = 0; + return V; case Instruction::Or: // X|C == X+C if all the bits in C are unset in X. Otherwise we can't // analyze it. if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, - BOp, DT)) - break; + BOp, DT)) { + Scale = 1; + Offset = 0; + return V; + } // FALL THROUGH. case Instruction::Add: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset += RHSC->getValue(); - return V; + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset += RHS; + break; + case Instruction::Sub: + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset -= RHS; + break; case Instruction::Mul: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset *= RHSC->getValue(); - Scale *= RHSC->getValue(); - return V; + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset *= RHS; + Scale *= RHS; + break; case Instruction::Shl: - V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension, - DL, Depth + 1, AC, DT); - Offset <<= RHSC->getValue().getLimitedValue(); - Scale <<= RHSC->getValue().getLimitedValue(); + V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits, + SExtBits, DL, Depth + 1, AC, DT, NSW, NUW); + Offset <<= RHS.getLimitedValue(); + Scale <<= RHS.getLimitedValue(); + // the semantics of nsw and nuw for left shifts don't match those of + // multiplications, so we won't propagate them. + NSW = NUW = false; return V; } + + if (isa(BOp)) { + NUW &= BOp->hasNoUnsignedWrap(); + NSW &= BOp->hasNoSignedWrap(); + } + return V; } } // Since GEP indices are sign extended anyway, we don't care about the high // bits of a sign or zero extended value - just scales and offsets. The // extensions have to be consistent though. - if ((isa(V) && Extension != EK_ZeroExt) || - (isa(V) && Extension != EK_SignExt)) { + if (isa(V) || isa(V)) { Value *CastOp = cast(V)->getOperand(0); - unsigned OldWidth = Scale.getBitWidth(); + unsigned NewWidth = V->getType()->getPrimitiveSizeInBits(); unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits(); - Scale = Scale.trunc(SmallWidth); - Offset = Offset.trunc(SmallWidth); - Extension = isa(V) ? EK_SignExt : EK_ZeroExt; - - Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL, - Depth + 1, AC, DT); - Scale = Scale.zext(OldWidth); - - // We have to sign-extend even if Extension == EK_ZeroExt as we can't - // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)). - Offset = Offset.sext(OldWidth); + unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits; + const Value *Result = + GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL, + Depth + 1, AC, DT, NSW, NUW); + + // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this + // by just incrementing the number of bits we've extended by. + unsigned ExtendedBy = NewWidth - SmallWidth; + + if (isa(V) && ZExtBits == 0) { + // sext(sext(%x, a), b) == sext(%x, a + b) + + if (NSW) { + // We haven't sign-wrapped, so it's valid to decompose sext(%x + c) + // into sext(%x) + sext(c). We'll sext the Offset ourselves: + unsigned OldWidth = Offset.getBitWidth(); + Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth); + } else { + // We may have signed-wrapped, so don't decompose sext(%x + c) into + // sext(%x) + sext(c) + Scale = 1; + Offset = 0; + Result = CastOp; + ZExtBits = OldZExtBits; + SExtBits = OldSExtBits; + } + SExtBits += ExtendedBy; + } else { + // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b) + + if (!NUW) { + // We may have unsigned-wrapped, so don't decompose zext(%x + c) into + // zext(%x) + zext(c) + Scale = 1; + Offset = 0; + Result = CastOp; + ZExtBits = OldZExtBits; + SExtBits = OldSExtBits; + } + ZExtBits += ExtendedBy; + } return Result; } @@ -350,7 +418,7 @@ gep_type_iterator GTI = gep_type_begin(GEPOp); for (User::const_op_iterator I = GEPOp->op_begin()+1, E = GEPOp->op_end(); I != E; ++I) { - Value *Index = *I; + const Value *Index = *I; // Compute the (potentially symbolic) offset in bytes for this index. if (StructType *STy = dyn_cast(*GTI++)) { // For a struct, add the member offset. @@ -362,25 +430,27 @@ } // For an array/pointer, add the element offset, explicitly scaled. - if (ConstantInt *CIdx = dyn_cast(Index)) { + if (const ConstantInt *CIdx = dyn_cast(Index)) { if (CIdx->isZero()) continue; BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue(); continue; } uint64_t Scale = DL.getTypeAllocSize(*GTI); - ExtensionKind Extension = EK_NotExtended; + unsigned ZExtBits = 0, SExtBits = 0; // If the integer type is smaller than the pointer size, it is implicitly // sign extended to pointer size. unsigned Width = Index->getType()->getIntegerBitWidth(); - if (DL.getPointerSizeInBits(AS) > Width) - Extension = EK_SignExt; + unsigned PointerSize = DL.getPointerSizeInBits(AS); + if (PointerSize > Width) + SExtBits += PointerSize - Width; // Use GetLinearExpression to decompose the index into a C1*V+C2 form. APInt IndexScale(Width, 0), IndexOffset(Width, 0); - Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL, - 0, AC, DT); + bool NSW = true, NUW = true; + Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits, + SExtBits, DL, 0, AC, DT, NSW, NUW); // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale. // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale. @@ -392,8 +462,8 @@ // A[x][x] -> x*16 + x*4 -> x*20 // This also ensures that 'x' only appears in the index list once. for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) { - if (VarIndices[i].V == Index && - VarIndices[i].Extension == Extension) { + if (VarIndices[i].V == Index && VarIndices[i].ZExtBits == ZExtBits && + VarIndices[i].SExtBits == SExtBits) { Scale += VarIndices[i].Scale; VarIndices.erase(VarIndices.begin()+i); break; @@ -402,13 +472,13 @@ // Make sure that we have a scale that makes sense for this target's // pointer size. - if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) { + if (unsigned ShiftBits = 64 - PointerSize) { Scale <<= ShiftBits; Scale = (int64_t)Scale >> ShiftBits; } if (Scale) { - VariableGEPIndex Entry = {Index, Extension, + VariableGEPIndex Entry = {Index, ZExtBits, SExtBits, static_cast(Scale)}; VarIndices.push_back(Entry); } @@ -543,6 +613,20 @@ /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2); + /// \brief A Heuristic for aliasGEP that searches for a constant offset + /// between the variables. + /// + /// GetLinearExpression has some limitations, as generally zext(%x + 1) + /// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression + /// will therefore conservatively refuse to decompose these expressions. + /// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if + /// the addition overflows. + bool + constantOffsetHeuristic(const SmallVectorImpl &VarIndices, + uint64_t V1Size, uint64_t V2Size, + int64_t BaseOffset, const DataLayout *DL, + AssumptionCache *AC, DominatorTree *DT); + /// \brief Dest and Src are the variable indices from two decomposed /// GetElementPtr instructions GEP1 and GEP2 which have common base /// pointers. Subtract the GEP2 indices from GEP1 to find the symbolic @@ -937,6 +1021,60 @@ return MayAlias; } +bool BasicAliasAnalysis::constantOffsetHeuristic( + const SmallVectorImpl &VarIndices, uint64_t V1Size, + uint64_t V2Size, int64_t BaseOffset, const DataLayout *DL, + AssumptionCache *AC, DominatorTree *DT) { + if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize || + V2Size == MemoryLocation::UnknownSize || !DL) + return false; + + const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1]; + + if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits || + Var0.Scale != -Var1.Scale) + return false; + + unsigned Width = Var1.V->getType()->getIntegerBitWidth(); + + // We'll strip off the Extensions of Var0 and Var1 and do another round + // of GetLinearExpression decomposition. In the example above, if Var0 + // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. + + APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0), + V1Offset(Width, 0); + bool NSW = true, NUW = true; + unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0; + const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits, + V0SExtBits, *DL, 0, AC, DT, NSW, NUW); + NSW = true, NUW = true; + const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits, + V1SExtBits, *DL, 0, AC, DT, NSW, NUW); + + if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits || + V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1)) + return false; + + // We have a hit - Var0 and Var1 only differ by a constant offset! + + // If we've been sext'ed then zext'd the maximum difference between Var0 and + // Var1 is possible to calculate, but we're just interested in the absolute + // minumum difference between the two. The minimum distance may occur due to + // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so + // the minimum distance between %i and %i + 5 is 3. + APInt MinDiff = V0Offset - V1Offset, + Wrapped = APInt::getMaxValue(Width) - MinDiff + APInt(Width, 1); + MinDiff = APIntOps::umin(MinDiff, Wrapped); + uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale); + + // We can't definitely say whether GEP1 is before or after V2 due to wrapping + // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other + // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and + // V2Size can fit in the MinDiffBytes gap. + return V1Size + std::abs(BaseOffset) <= MinDiffBytes && + V2Size + std::abs(BaseOffset) <= MinDiffBytes; +} + /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction /// against another pointer. We know that V1 is a GEP, but we don't know /// anything about V2. UnderlyingV1 is GetUnderlyingObject(GEP1, DL), @@ -1159,7 +1297,7 @@ // Zero-extension widens the variable, and so forces the sign // bit to zero. - bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt; + bool IsZExt = GEP1VariableIndices[i].ZExtBits > 0 || isa(V); SignKnownZero |= IsZExt; SignKnownOne &= !IsZExt; @@ -1189,6 +1327,10 @@ // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr. if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset) return NoAlias; + + if (constantOffsetHeuristic(GEP1VariableIndices, V1Size, V2Size, + GEP1BaseOffset, DL, AC1, DT)) + return NoAlias; } // Statically, we can see that the base objects are the same, but the @@ -1550,14 +1692,14 @@ for (unsigned i = 0, e = Src.size(); i != e; ++i) { const Value *V = Src[i].V; - ExtensionKind Extension = Src[i].Extension; + unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits; int64_t Scale = Src[i].Scale; // Find V in Dest. This is N^2, but pointer indices almost never have more // than a few variable indexes. for (unsigned j = 0, e = Dest.size(); j != e; ++j) { if (!isValueEqualInPotentialCycles(Dest[j].V, V) || - Dest[j].Extension != Extension) + Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits) continue; // If we found it, subtract off Scale V's from the entry in Dest. If it @@ -1572,7 +1714,7 @@ // If we didn't consume this entry, add it to the end of the Dest list. if (Scale) { - VariableGEPIndex Entry = { V, Extension, -Scale }; + VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale}; Dest.push_back(Entry); } } Index: test/Analysis/BasicAA/bug.23540.ll =================================================================== --- /dev/null +++ test/Analysis/BasicAA/bug.23540.ll @@ -0,0 +1,17 @@ +; RUN: opt < %s -basicaa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s +target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-unknown-linux-gnu" + +@c = external global i32 + +; CHECK-LABEL: f +; CHECK: PartialAlias: i32* %arrayidx, i32* %arrayidx6 +define void @f() { + %idxprom = zext i32 undef to i64 + %add4 = add i32 0, 1 + %idxprom5 = zext i32 %add4 to i64 + %arrayidx6 = getelementptr inbounds i32, i32* @c, i64 %idxprom5 + %arrayidx = getelementptr inbounds i32, i32* @c, i64 %idxprom + ret void +} + Index: test/Analysis/BasicAA/bug.23626.ll =================================================================== --- /dev/null +++ test/Analysis/BasicAA/bug.23626.ll @@ -0,0 +1,31 @@ +; RUN: opt < %s -basicaa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s +target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" +target triple = "x86_64-apple-darwin13.4.0" + +; CHECK-LABEL: compute1 +; CHECK: PartialAlias: i32* %arrayidx8, i32* %out +; CHECK: PartialAlias: i32* %arrayidx11, i32* %out +; CHECK: PartialAlias: i32* %arrayidx11, i32* %arrayidx8 +; CHECK: PartialAlias: i32* %arrayidx14, i32* %out +; CHECK: PartialAlias: i32* %arrayidx14, i32* %arrayidx8 +; CHECK: PartialAlias: i32* %arrayidx11, i32* %arrayidx14 +define void @compute1(i32 %num.0.lcssa, i32* %out) { + %idxprom = zext i32 %num.0.lcssa to i64 + %arrayidx8 = getelementptr inbounds i32, i32* %out, i64 %idxprom + %add9 = or i32 %num.0.lcssa, 1 + %idxprom10 = zext i32 %add9 to i64 + %arrayidx11 = getelementptr inbounds i32, i32* %out, i64 %idxprom10 + %add12 = or i32 %num.0.lcssa, 2 + %idxprom13 = zext i32 %add12 to i64 + %arrayidx14 = getelementptr inbounds i32, i32* %out, i64 %idxprom13 + ret void +} + +; CHECK-LABEL: compute2 +; CHECK: PartialAlias: i32* %arrayidx11, i32* %out.addr +define void @compute2(i32 %num, i32* %out.addr) { + %add9 = add i32 %num, 1 + %idxprom10 = zext i32 %add9 to i64 + %arrayidx11 = getelementptr inbounds i32, i32* %out.addr, i64 %idxprom10 + ret void +} Index: test/Analysis/BasicAA/q.bad.ll =================================================================== --- /dev/null +++ test/Analysis/BasicAA/q.bad.ll @@ -0,0 +1,180 @@ +; RUN: opt < %s -basicaa -aa-eval -print-all-alias-modref-info -disable-output 2>&1 | FileCheck %s +target datalayout = "e-m:e-p:32:32-i64:64-v128:64:128-a:0:32-n32-S64" +target triple = "thumbv7--linux-gnueabi" + +; CHECK-LABEL: test_zext_sext_amounts255 +; CHECK: NoAlias: i8* %a, i8* %b +define void @test_zext_sext_amounts255(i8* %mem) { + %sext.1 = sext i8 255 to i16 + %sext.zext.1 = zext i16 %sext.1 to i64 + %sext.2 = sext i8 255 to i32 + %sext.zext.2 = zext i32 %sext.2 to i64 + %a = getelementptr inbounds i8, i8* %mem, i64 %sext.zext.1 + %b = getelementptr inbounds i8, i8* %mem, i64 %sext.zext.2 + ret void +} + +; CHECK-LABEL: test_zext_sext_amounts +; CHECK: PartialAlias: i8* %a, i8* %b +; %a and %b only PartialAlias as, although they're both zext(sext(%num)) they'll extend the sign by a different +; number of bits before zext-ing the remainder. +define void @test_zext_sext_amounts(i8* %mem, i8 %num) { + %sext.1 = sext i8 %num to i16 + %sext.zext.1 = zext i16 %sext.1 to i64 + %sext.2 = sext i8 %num to i32 + %sext.zext.2 = zext i32 %sext.2 to i64 + %a = getelementptr inbounds i8, i8* %mem, i64 %sext.zext.1 + %b = getelementptr inbounds i8, i8* %mem, i64 %sext.zext.2 + ret void +} + +; CHECK-LABEL: based_on_pr18068 +; CHECK: NoAlias: i8* %a, i8* %b +; CHECK: NoAlias: i8* %a, i8* %c +define void @based_on_pr18068(i32 %loaded, i8* %mem) { + %loaded.64 = zext i32 %loaded to i64 + %add1 = add i32 %loaded, -1 ; unsigned wraps unless %loaded == 0 + %add1.64 = zext i32 %add1 to i64 ; is zext(%loaded) always != zext(%loaded - 1)? Yes -> NoAlias + %sub1 = sub i32 %loaded, 1 ; unsigned wraps iff %loaded == 0 + %sub1.64 = zext i32 %sub1 to i64 ; is zext(%loaded) always != zext(%loaded - 1)? Yes -> NoAlias + %a = getelementptr inbounds i8, i8* %mem, i64 %loaded.64 + %b = getelementptr inbounds i8, i8* %mem, i64 %add1.64 + %c = getelementptr inbounds i8, i8* %mem, i64 %sub1.64 + ret void +} + +; CHECK-LABEL: test_path_dependence +; CHECK: PartialAlias: i8* %a, i8* %b +; CHECK: MustAlias: i8* %a, i8* %c +; CHECK: PartialAlias: i8* %a, i8* %d +define void @test_path_dependence(i32 %p, i8* %mem) { + %p.minus1 = add i32 %p, -1 ; this will always unsigned-wrap, unless %p == 0 + %p.minus1.64 = zext i32 %p.minus1 to i64 + %p.64.again = add i64 %p.minus1.64, 1 ; either %p (if we wrapped) or 4294967296 (if we didn't) + + %p.nsw.nuw.minus1 = sub nsw nuw i32 %p, 1 ; as nuw we know %p >= 1, and as nsw %p <= 2147483647 + %p.nsw.nuw.minus1.64 = zext i32 %p.nsw.nuw.minus1 to i64 + %p.nsw.nuw.64.again = add nsw nuw i64 %p.nsw.nuw.minus1.64, 1 ; ...so always exactly %p + + %p.nsw.minus1 = sub nsw i32 %p, 1 ; only nsw, so can only guarantee %p != 0x10000000 + %p.nsw.minus1.64 = zext i32 %p.nsw.minus1 to i64 ; when %p > 0x10000000 (ie <= 0 as a signed number) then the zext will make this a huge positive number + %p.nsw.64.again = add nsw i64 %p.nsw.minus1.64, 1 ; ...and so this is very much != %p + + %p.64 = zext i32 %p to i64 + %a = getelementptr inbounds i8, i8* %mem, i64 %p.64 + %b = getelementptr inbounds i8, i8* %mem, i64 %p.64.again + %c = getelementptr inbounds i8, i8* %mem, i64 %p.nsw.nuw.64.again + %d = getelementptr inbounds i8, i8* %mem, i64 %p.nsw.64.again + ret void +} + +; CHECK-LABEL: test_zext_sext_255 +; CHECK: NoAlias: i8* %a, i8* %b +define void @test_zext_sext_255(i8* %mem) { + %zext.255 = zext i8 255 to i16 ; 0x00FF + %sext.255 = sext i8 255 to i16 ; 0xFFFF + %zext.sext.255 = zext i16 %sext.255 to i32 ; 0x0000FFFF + %sext.zext.255 = sext i16 %zext.255 to i32 ; 0x000000FF + %zext.zext.sext.255 = zext i32 %zext.sext.255 to i64 + %zext.sext.zext.255 = zext i32 %sext.zext.255 to i64 + %a = getelementptr inbounds i8, i8* %mem, i64 %zext.zext.sext.255 + %b = getelementptr inbounds i8, i8* %mem, i64 %zext.sext.zext.255 + ret void +} + +; CHECK-LABEL: test_zext_sext_num +; CHECK: PartialAlias: i8* %a, i8* %b +; %a and %b NoAlias if %num == 255 (see @test_zext_sext_255), but %a and %b NoAlias for other values of %num (e.g. 0) +define void @test_zext_sext_num(i8* %mem, i8 %num) { + %zext.num = zext i8 %num to i16 + %sext.num = sext i8 %num to i16 + %zext.sext.num = zext i16 %sext.num to i32 + %sext.zext.num = sext i16 %zext.num to i32 + %zext.zext.sext.num = zext i32 %zext.sext.num to i64 + %zext.sext.zext.num = zext i32 %sext.zext.num to i64 + %a = getelementptr inbounds i8, i8* %mem, i64 %zext.zext.sext.num + %b = getelementptr inbounds i8, i8* %mem, i64 %zext.sext.zext.num + ret void +} + +; CHECK-LABEL: uncompressStream +; CHECK: MustAlias: i8* %a, i8* %b +; CHECK: NoAlias: i8* %a, i8* %c +define void @uncompressStream(i8* %mem) { + %zext.255 = zext i8 255 to i32 + %sext.255 = sext i8 255 to i32 + %a = getelementptr inbounds i8, i8* %mem, i32 255 + %b = getelementptr inbounds i8, i8* %mem, i32 %zext.255 + %c = getelementptr inbounds i8, i8* %mem, i32 %sext.255 + ret void +} + +; CHECK-LABEL: constantOffsetHeuristic_i3_i32 +; CHECK: NoAlias: i32* %a, i32* %b +; CHECK: NoAlias: i32* %a, i32* %c +; CHECK: NoAlias: i32* %b, i32* %c +define void @constantOffsetHeuristic_i3_i32(i32* %mem, i3 %val) { + %zext.plus.7 = add nsw i3 %val, 7 + %zext.plus.4 = add nsw i3 %val, 4 + %zext.val = zext i3 %val to i32 + %zext.4 = zext i3 %zext.plus.4 to i32 + %zext.7 = zext i3 %zext.plus.7 to i32 + %a = getelementptr inbounds i32, i32* %mem, i32 %zext.4 + %b = getelementptr inbounds i32, i32* %mem, i32 %zext.7 + %c = getelementptr inbounds i32, i32* %mem, i32 %zext.val + ret void +} + +; CHECK-LABEL: constantOffsetHeuristic_i8_i32 +; CHECK: NoAlias: i32* %a, i32* %b +; CHECK: NoAlias: i32* %a, i32* %c +; CHECK: NoAlias: i32* %b, i32* %c +define void @constantOffsetHeuristic_i8_i32(i32* %mem, i8 %val) { + %zext.plus.7 = add nsw i8 %val, 7 + %zext.plus.4 = add nsw i8 %val, 4 + %zext.val = zext i8 %val to i32 + %zext.4 = zext i8 %zext.plus.4 to i32 + %zext.7 = zext i8 %zext.plus.7 to i32 + %a = getelementptr inbounds i32, i32* %mem, i32 %zext.4 + %b = getelementptr inbounds i32, i32* %mem, i32 %zext.7 + %c = getelementptr inbounds i32, i32* %mem, i32 %zext.val + ret void +} + +; CHECK-LABEL: constantOffsetHeuristic_i3_i8 +; CHECK: PartialAlias: i32* %a, i32* %b +; CHECK: NoAlias: i32* %a, i32* %c +; CHECK: PartialAlias: i32* %b, i32* %c +define void @constantOffsetHeuristic_i3_i8(i8* %mem, i3 %val) { + %zext.plus.7 = add nsw i3 %val, 7 + %zext.plus.4 = add nsw i3 %val, 4 + %zext.val = zext i3 %val to i32 + %zext.4 = zext i3 %zext.plus.4 to i32 + %zext.7 = zext i3 %zext.plus.7 to i32 + %a.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.4 + %b.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.7 + %c.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.val + %a = bitcast i8* %a.8 to i32* + %b = bitcast i8* %b.8 to i32* + %c = bitcast i8* %c.8 to i32* + ret void +} + +; CHECK-LABEL: constantOffsetHeuristic_i8_i8 +; CHECK: PartialAlias: i32* %a, i32* %b +; CHECK: NoAlias: i32* %a, i32* %c +; CHECK: NoAlias: i32* %b, i32* %c +define void @constantOffsetHeuristic_i8_i8(i8* %mem, i8 %val) { + %zext.plus.7 = add nsw i8 %val, 7 + %zext.plus.4 = add nsw i8 %val, 4 + %zext.val = zext i8 %val to i32 + %zext.4 = zext i8 %zext.plus.4 to i32 + %zext.7 = zext i8 %zext.plus.7 to i32 + %a.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.4 + %b.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.7 + %c.8 = getelementptr inbounds i8, i8* %mem, i32 %zext.val + %a = bitcast i8* %a.8 to i32* + %b = bitcast i8* %b.8 to i32* + %c = bitcast i8* %c.8 to i32* + ret void +}