diff --git a/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp b/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp --- a/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp +++ b/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp @@ -1071,6 +1071,59 @@ rank, shape, perm.data(), sparse.data(), tensor); } +/// Converts a sparse tensor to COO-flavored format expressed using C-style +/// data structures. The expected output parameters are pointers for these +/// values: +/// +/// rank: rank of tensor +/// nse: number of specified elements (usually the nonzeros) +/// shape: array with dimension size for each rank +/// values: a "nse" array with values for all specified elements +/// indices: a flat "nse x rank" array with indices for all specified elements +/// +/// The input is a pointer to SparseTensorStorage, typically returned +/// from convertToMLIRSparseTensor. +/// +// TODO: Currently, values are copied from SparseTensorStorage to +// SparseTensorCOO, then to the output. We may want to reduce the number of +// copies. +// +// TODO: for now f64 tensors only, no dim ordering, all dimensions compressed +// +void convertFromMLIRSparseTensor(void *tensor, uint64_t *p_rank, + uint64_t *p_nse, uint64_t **p_shape, + double **p_values, uint64_t **p_indices) { + SparseTensorStorage *sparse_tensor = + static_cast *>(tensor); + uint64_t rank = sparse_tensor->getRank(); + std::vector perm(rank); + std::iota(perm.begin(), perm.end(), 0); + SparseTensorCOO *coo = sparse_tensor->toCOO(perm.data()); + + const std::vector> &elements = coo->getElements(); + uint64_t nse = elements.size(); + + uint64_t *shape = new uint64_t[rank]; + for (uint64_t i = 0; i < rank; i++) + shape[i] = coo->getSizes()[i]; + + double *values = new double[nse]; + uint64_t *indices = new uint64_t[rank * nse]; + + for (uint64_t i = 0, base = 0; i < nse; i++) { + values[i] = elements[i].value; + for (uint64_t j = 0; j < rank; j++) + indices[base + j] = elements[i].indices[j]; + base += rank; + } + + delete coo; + *p_rank = rank; + *p_nse = nse; + *p_shape = shape; + *p_values = values; + *p_indices = indices; +} } // extern "C" #endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_elementwise_add_sparse_output.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_elementwise_add_sparse_output.py new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_elementwise_add_sparse_output.py @@ -0,0 +1,133 @@ +# RUN: SUPPORT_LIB=%mlir_runner_utils_dir/libmlir_c_runner_utils%shlibext %PYTHON %s | FileCheck %s + +import ctypes +import numpy as np +import os +import sys + +import mlir.all_passes_registration + +from mlir import ir +from mlir import runtime as rt +from mlir import execution_engine +from mlir import passmanager +from mlir.dialects import sparse_tensor as st +from mlir.dialects import builtin +from mlir.dialects.linalg.opdsl import lang as dsl + +_SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) +sys.path.append(_SCRIPT_PATH) +from tools import np_to_sparse_tensor as test_tools + +# TODO: Use linalg_structured_op to generate the kernel after making it to +# handle sparse tensor outputs. +_KERNEL_STR = """ +#DCSR = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed", "compressed" ] +}> + +#trait_add_elt = { + indexing_maps = [ + affine_map<(i,j) -> (i,j)>, // A + affine_map<(i,j) -> (i,j)>, // B + affine_map<(i,j) -> (i,j)> // X (out) + ], + iterator_types = ["parallel", "parallel"], + doc = "X(i,j) = A(i,j) + B(i,j)" +} + +func @sparse_add_elt( + %arga: tensor<3x4xf64, #DCSR>, %argb: tensor<3x4xf64, #DCSR>) -> tensor<3x4xf64, #DCSR> { + %c3 = arith.constant 3 : index + %c4 = arith.constant 4 : index + %argx = sparse_tensor.init [%c3, %c4] : tensor<3x4xf64, #DCSR> + %0 = linalg.generic #trait_add_elt + ins(%arga, %argb: tensor<3x4xf64, #DCSR>, tensor<3x4xf64, #DCSR>) + outs(%argx: tensor<3x4xf64, #DCSR>) { + ^bb(%a: f64, %b: f64, %x: f64): + %1 = arith.addf %a, %b : f64 + linalg.yield %1 : f64 + } -> tensor<3x4xf64, #DCSR> + return %0 : tensor<3x4xf64, #DCSR> +} + +func @main(%ad: tensor<3x4xf64>, %bd: tensor<3x4xf64>) -> tensor<3x4xf64, #DCSR> + attributes { llvm.emit_c_interface } { + %a = sparse_tensor.convert %ad : tensor<3x4xf64> to tensor<3x4xf64, #DCSR> + %b = sparse_tensor.convert %bd : tensor<3x4xf64> to tensor<3x4xf64, #DCSR> + %0 = call @sparse_add_elt(%a, %b) : (tensor<3x4xf64, #DCSR>, tensor<3x4xf64, #DCSR>) -> tensor<3x4xf64, #DCSR> + return %0 : tensor<3x4xf64, #DCSR> +} +""" + + +class _SparseCompiler: + """Sparse compiler passes.""" + + def __init__(self): + self.pipeline = ( + f'sparsification,' + f'sparse-tensor-conversion,' + f'builtin.func(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf),' + f'convert-scf-to-std,' + f'func-bufferize,' + f'tensor-constant-bufferize,' + f'builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize),' + f'convert-vector-to-llvm{{reassociate-fp-reductions=1 enable-index-optimizations=1}},' + f'lower-affine,' + f'convert-memref-to-llvm,' + f'convert-std-to-llvm,' + f'reconcile-unrealized-casts') + + def __call__(self, module: ir.Module): + passmanager.PassManager.parse(self.pipeline).run(module) + + +def _run_test(support_lib, kernel): + """Compiles, runs and checks results.""" + module = ir.Module.parse(kernel) + _SparseCompiler()(module) + engine = execution_engine.ExecutionEngine( + module, opt_level=0, shared_libs=[support_lib]) + + # Set up numpy inputs and buffer for output. + a = np.array( + [[1.1, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 6.6, 0.0]], + np.float64) + b = np.array( + [[1.1, 0.0, 0.0, 2.8], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0]], + np.float64) + + mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) + mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) + + # The sparse tensor output is a pointer to pointer of char. + out = ctypes.c_char(0) + mem_out = ctypes.pointer(ctypes.pointer(out)) + + # Invoke the kernel. + engine.invoke('main', mem_a, mem_b, mem_out) + + # Retrieve and check the result. + rank, nse, shape, values, indices = test_tools.sparse_tensor_to_coo_tensor( + support_lib, mem_out[0], np.float64) + + # CHECK: PASSED + np.allclose(rank, 2) + np.allclose(nse, 3) + np.allclose(shape, [3, 4]) + np.allclose(values, [2.2, 2.8, 6.6]) + np.allclose(indices, [[0, 0], [0, 3], [2, 2]]) + print('PASSED') + + +def test_elementwise_add(): + # Obtain path to runtime support library. + support_lib = os.getenv('SUPPORT_LIB') + assert support_lib is not None, 'SUPPORT_LIB is undefined' + assert os.path.exists(support_lib), f'{support_lib} does not exist' + with ir.Context() as ctx, ir.Location.unknown(): + _run_test(support_lib, _KERNEL_STR) + + +test_elementwise_add() diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/tools/lit.local.cfg b/mlir/test/Integration/Dialect/SparseTensor/python/tools/lit.local.cfg new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/python/tools/lit.local.cfg @@ -0,0 +1,2 @@ +# Files in this directory are tools, not tests. +config.unsupported = True diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/tools/np_to_sparse_tensor.py b/mlir/test/Integration/Dialect/SparseTensor/python/tools/np_to_sparse_tensor.py new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/python/tools/np_to_sparse_tensor.py @@ -0,0 +1,74 @@ +# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +# See https://llvm.org/LICENSE.txt for license information. +# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception + +# This file contains functions to process sparse tensor outputs. + +import ctypes +import functools +import numpy as np + + +@functools.lru_cache() +def _get_c_shared_lib(lib_name: str): + """Loads and returns the requested C shared library. + + Args: + lib_name: A string representing the C shared library. + + Raises: + OSError: If there is any problem in loading the shared library. + ValueError: If the shared library doesn't contain the needed routine. + + Returns: + The C shared library. + """ + # This raises OSError exception if there is any problem in loading the shared + # library. + c_lib = ctypes.CDLL(lib_name) + + try: + c_lib.convertFromMLIRSparseTensor.restype = ctypes.c_void_p + except Exception as e: + raise ValueError('Missing function convertFromMLIRSparseTensor from ' + f'the C shared library: {e} ') from e + + return c_lib + + +def sparse_tensor_to_coo_tensor(support_lib, sparse, dtype): + """Converts a sparse tensor to COO-flavored format. + + Args: + support_lib: A string for the supporting C shared library. + sparse: A ctypes.pointer to the sparse tensor descriptor. + dtype: The numpty data type for the tensor elements. + + Raises: + OSError: If there is any problem in loading the shared library. + ValueError: If the shared library doesn't contain the needed routine. + + Returns: + A tuple that contains the following values: + rank: An integer for the rank of the tensor. + nse: An interger for the number of non-zero values in the tensor. + shape: A 1D numpy array of integers, for the shape of the tensor. + values: A 1D numpy array, for the non-zero values in the tensor. + indices: A 2D numpy array of integers, representing the indices for the + non-zero values in the tensor. + """ + c_lib = _get_c_shared_lib(support_lib) + + rank = ctypes.c_ulonglong(0) + nse = ctypes.c_ulonglong(0) + shape = ctypes.POINTER(ctypes.c_ulonglong)() + values = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))() + indices = ctypes.POINTER(ctypes.c_ulonglong)() + c_lib.convertFromMLIRSparseTensor(sparse, ctypes.byref(rank), + ctypes.byref(nse), ctypes.byref(shape), + ctypes.byref(values), ctypes.byref(indices)) + # Convert the returned values to the corresponding numpy types. + shape = np.ctypeslib.as_array(shape, shape=[rank.value]) + values = np.ctypeslib.as_array(values, shape=[nse.value]) + indices = np.ctypeslib.as_array(indices, shape=[nse.value, rank.value]) + return rank, nse, shape, values, indices