diff --git a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py --- a/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py +++ b/mlir/test/Integration/Dialect/SparseTensor/python/test_SpMM.py @@ -90,12 +90,14 @@ np.float64) b = np.array([[1.0, 2.0], [4.0, 3.0], [5.0, 6.0], [8.0, 7.0]], np.float64) c = np.zeros((3, 2), np.float64) - out = np.zeros((3, 2), np.float64) mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) - mem_out = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(out))) + # Allocate a MemRefDescriptor to receive the output tensor. + # The buffer itself is allocated inside the MLIR code generation. + ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() + mem_out = ctypes.pointer(ctypes.pointer(ref_out)) # Invoke the kernel and get numpy output. # Built-in bufferization uses in-out buffers.