diff --git a/mlir/CMakeLists.txt b/mlir/CMakeLists.txt --- a/mlir/CMakeLists.txt +++ b/mlir/CMakeLists.txt @@ -188,3 +188,7 @@ endif() add_subdirectory(cmake/modules) + +if (MLIR_ENABLE_PYTHON_BENCHMARKS) + add_subdirectory(utils/mbr) +endif() diff --git a/mlir/benchmark/python/__init__.py b/mlir/benchmark/python/__init__.py new file mode 100644 diff --git a/mlir/benchmark/python/benchmark_sparse.py b/mlir/benchmark/python/benchmark_sparse.py new file mode 100644 --- /dev/null +++ b/mlir/benchmark/python/benchmark_sparse.py @@ -0,0 +1,121 @@ +"""This file contains benchmarks for sparse tensors. In particular, it +contains benchmarks for both mlir sparse tensor dialect and numpy so that they +can be compared against each other. +""" +import ctypes +import numpy as np +import os +import re +import time + +from mlir import ir +from mlir import runtime as rt +from mlir.dialects import builtin +from mlir.dialects.linalg.opdsl import lang as dsl +from mlir.execution_engine import ExecutionEngine + +from common import create_sparse_np_tensor +from common import emit_timer_func +from common import emit_benchmark_wrapped_main_func +from common import get_kernel_func_from_module +from common import setup_passes + + +@dsl.linalg_structured_op +def matmul_dsl( + A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), + B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), + C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True) +): + """Helper function for mlir sparse matrix multiplication benchmark.""" + C[dsl.D.m, dsl.D.n] += A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] + + +def benchmark_sparse_mlir_multiplication(): + """Benchmark for mlir sparse matrix multiplication. Because its an + MLIR benchmark we need to return both a `compiler` function and a `runner` + function. + """ + with ir.Context(), ir.Location.unknown(): + module = ir.Module.create() + f64 = ir.F64Type.get() + param1_type = ir.RankedTensorType.get([1000, 1500], f64) + param2_type = ir.RankedTensorType.get([1500, 2000], f64) + result_type = ir.RankedTensorType.get([1000, 2000], f64) + with ir.InsertionPoint(module.body): + @builtin.FuncOp.from_py_func(param1_type, param2_type, result_type) + def sparse_kernel(x, y, z): + return matmul_dsl(x, y, outs=[z]) + + def compiler(): + with ir.Context(), ir.Location.unknown(): + kernel_func = get_kernel_func_from_module(module) + timer_func = emit_timer_func() + wrapped_func = emit_benchmark_wrapped_main_func( + kernel_func, + timer_func + ) + main_module_with_benchmark = ir.Module.parse( + str(timer_func) + str(wrapped_func) + str(kernel_func) + ) + setup_passes(main_module_with_benchmark) + c_runner_utils = os.getenv("MLIR_C_RUNNER_UTILS", "") + assert os.path.exists(c_runner_utils),\ + f"{c_runner_utils} does not exist." \ + f" Please pass a valid value for" \ + f" MLIR_C_RUNNER_UTILS environment variable." + runner_utils = os.getenv("MLIR_RUNNER_UTILS", "") + assert os.path.exists(runner_utils),\ + f"{runner_utils} does not exist." \ + f" Please pass a valid value for MLIR_RUNNER_UTILS" \ + f" environment variable." + + engine = ExecutionEngine( + main_module_with_benchmark, + 3, + shared_libs=[c_runner_utils, runner_utils] + ) + return engine.invoke + + def runner(engine_invoke): + compiled_program_args = [] + for argument_type in [ + result_type, param1_type, param2_type, result_type + ]: + argument_type_str = str(argument_type) + dimensions_str = re.sub("<|>|tensor", "", argument_type_str) + dimensions = [int(dim) for dim in dimensions_str.split("x")[:-1]] + if argument_type == result_type: + argument = np.zeros(dimensions, np.float64) + else: + argument = create_sparse_np_tensor(dimensions, 1000) + compiled_program_args.append( + ctypes.pointer( + ctypes.pointer(rt.get_ranked_memref_descriptor(argument)) + ) + ) + np_timers_ns = np.array([0], dtype=np.int64) + compiled_program_args.append( + ctypes.pointer( + ctypes.pointer(rt.get_ranked_memref_descriptor(np_timers_ns)) + ) + ) + engine_invoke("main", *compiled_program_args) + return int(np_timers_ns[0]) + + return compiler, runner + + +def benchmark_np_matrix_multiplication(): + """Benchmark for numpy matrix multiplication. Because its a python + benchmark, we don't have any `compiler` function returned. We just return + the `runner` function. + """ + def runner(): + argument1 = np.random.uniform(low=0.0, high=100.0, size=(1000, 1500)) + argument2 = np.random.uniform(low=0.0, high=100.0, size=(1500, 2000)) + start_time = time.time_ns() + np.matmul(argument1, argument2) + return time.time_ns() - start_time + + return None, runner diff --git a/mlir/benchmark/python/common.py b/mlir/benchmark/python/common.py new file mode 100644 --- /dev/null +++ b/mlir/benchmark/python/common.py @@ -0,0 +1,124 @@ +"""Common utilities that are useful for all the benchmarks.""" +import numpy as np + +import mlir.all_passes_registration + +from mlir import ir +from mlir.dialects import arith +from mlir.dialects import builtin +from mlir.dialects import memref +from mlir.dialects import scf +from mlir.dialects import std +from mlir.passmanager import PassManager + + +def setup_passes(mlir_module): + """Setup pass pipeline parameters for benchmark functions. + """ + opt = ( + "parallelization-strategy=0" + " vectorization-strategy=0 vl=1 enable-simd-index32=False" + ) + pipeline = ( + f"builtin.func" + f"(linalg-generalize-named-ops,linalg-fuse-elementwise-ops)," + f"sparsification{{{opt}}}," + f"sparse-tensor-conversion," + f"builtin.func" + f"(linalg-bufferize,convert-linalg-to-loops,convert-vector-to-scf)," + f"convert-scf-to-std," + f"func-bufferize," + f"tensor-constant-bufferize," + f"builtin.func(tensor-bufferize,std-bufferize,finalizing-bufferize)," + f"convert-vector-to-llvm" + f"{{reassociate-fp-reductions=1 enable-index-optimizations=1}}," + f"lower-affine," + f"convert-memref-to-llvm," + f"convert-std-to-llvm," + f"reconcile-unrealized-casts" + ) + PassManager.parse(pipeline).run(mlir_module) + + +def create_sparse_np_tensor(dimensions, number_of_elements): + """Constructs a numpy tensor of dimensions `dimensions` that has only a + specific number of nonzero elements, specified by the `number_of_elements` + argument. + """ + tensor = np.zeros(dimensions, np.float64) + tensor_indices_list = [ + [np.random.randint(0, dimension) for dimension in dimensions] + for _ in range(number_of_elements) + ] + for tensor_indices in tensor_indices_list: + current_tensor = tensor + for tensor_index in tensor_indices[:-1]: + current_tensor = current_tensor[tensor_index] + current_tensor[tensor_indices[-1]] = np.random.uniform(1, 100) + return tensor + + +def get_kernel_func_from_module(module: ir.Module) -> builtin.FuncOp: + """Takes an mlir module object and extracts the function object out of it. + This function only works for a module with one region, one block, and one + operation. + """ + assert len(module.operation.regions) == 1, \ + "Expected kernel module to have only one region" + assert len(module.operation.regions[0].blocks) == 1, \ + "Expected kernel module to have only one block" + assert len(module.operation.regions[0].blocks[0].operations) == 1, \ + "Expected kernel module to have only one operation" + return module.operation.regions[0].blocks[0].operations[0] + + +def emit_timer_func() -> builtin.FuncOp: + """Returns the declaration of nano_time function. If nano_time function is + used, the `MLIR_RUNNER_UTILS` and `MLIR_C_RUNNER_UTILS` must be included. + """ + i64_type = ir.IntegerType.get_signless(64) + nano_time = builtin.FuncOp( + "nano_time", ([], [i64_type]), visibility="private") + nano_time.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get() + return nano_time + + +def emit_benchmark_wrapped_main_func(func, timer_func): + """Takes a function and a timer function, both represented as FuncOp + objects, and returns a new function. This new function wraps the call to + the original function between calls to the timer_func and this wrapping + in turn is executed inside a loop. The loop is executed + len(func.type.results) times. This function can be used to create a + "time measuring" variant of a function. + """ + i64_type = ir.IntegerType.get_signless(64) + memref_of_i64_type = ir.MemRefType.get([-1], i64_type) + wrapped_func = builtin.FuncOp( + # Same signature and an extra buffer of indices to save timings. + "main", + (func.arguments.types + [memref_of_i64_type], func.type.results), + visibility="public" + ) + wrapped_func.attributes["llvm.emit_c_interface"] = ir.UnitAttr.get() + + num_results = len(func.type.results) + with ir.InsertionPoint(wrapped_func.add_entry_block()): + timer_buffer = wrapped_func.arguments[-1] + zero = arith.ConstantOp.create_index(0) + n_iterations = memref.DimOp(ir.IndexType.get(), timer_buffer, zero) + one = arith.ConstantOp.create_index(1) + iter_args = list(wrapped_func.arguments[-num_results - 1:-1]) + loop = scf.ForOp(zero, n_iterations, one, iter_args) + with ir.InsertionPoint(loop.body): + start = std.CallOp(timer_func, []) + call = std.CallOp( + func, + wrapped_func.arguments[:-num_results - 1] + loop.inner_iter_args + ) + end = std.CallOp(timer_func, []) + time_taken = arith.SubIOp(end, start) + memref.StoreOp(time_taken, timer_buffer, [loop.induction_variable]) + scf.YieldOp(list(call.results)) + std.ReturnOp(loop) + + return wrapped_func diff --git a/mlir/utils/mbr/CMakeLists.txt b/mlir/utils/mbr/CMakeLists.txt new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/CMakeLists.txt @@ -0,0 +1 @@ +configure_file(mlir-mbr.in ${CMAKE_BINARY_DIR}/bin/mlir-mbr @ONLY) diff --git a/mlir/utils/mbr/README.md b/mlir/utils/mbr/README.md new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/README.md @@ -0,0 +1,86 @@ +# MBR - MLIR Benchmark Runner +MBR is a tool to run benchmarks. It measures compilation and running times of +benchmark programs. It uses MLIR's python bindings for MLIR benchmarks. + +## Installation +To build and enable MLIR benchmarks, pass `-DMLIR_ENABLE_PYTHON_BENCHMARKS=ON` +while building MLIR. If you make some changes to the `mbr` files itself, build +again with `-DMLIR_ENABLE_PYTHON_BENCHMARKS=ON`. + +## Writing benchmarks +As mentioned in the intro, this tool measures compilation and running times. +An MBR benchmark is a python function that returns two callables, a compiler +and a runner. Here's an outline of a benchmark; we explain its working after +the example code. + +```python +def benchmark_something(): + # Preliminary setup + def compiler(): + # Compiles a program and creates an "executable object" that can be + # called to invoke the compiled program. + ... + + def runner(executable_object): + # Sets up arguments for executable_object and calls it. The + # executable_object is returned by the compiler. + # Returns an integer representing running time in nanoseconds. + ... + + return compiler, runner +``` + +The benchmark function's name must be prefixed by `"benchmark_"` and benchmarks +must be in the python files prefixed by `"benchmark_` for them to be +discoverable. The file and function prefixes are configurable using the +configuration file `mbr/config.ini` relative to this README's directory. + +A benchmark returns two functions, a `compiler` and a `runner`. The `compiler` +returns a callable which is accepted as an argument by the runner function. +So the two functions work like this +1. `compiler`: configures and returns a callable. +2. `runner`: takes that callable in as input, sets up its arguments, and calls + it. Returns an int representing running time in nanoseconds. + +The `compiler` callable is optional if there is no compilation step, for +example, for benchmarks involving numpy. In that case, the benchmarks look +like this. + +```python +def benchmark_something(): + # Preliminary setup + def runner(): + # Run the program and return the running time in nanoseconds. + ... + + return None, runner +``` +In this case, the runner does not take any input as there is no compiled object +to invoke. + +## Running benchmarks +MLIR benchmarks can be run like this + +```bash +PYTHONPATH= python /bin/mlir-mbr --machine --revision --result-stdout +``` +For a description of command line arguments, run + +```bash +python mlir/utils/mbr/mbr/main.py -h +``` +And to learn more about the other arguments, check out the LNT's +documentation page [here](https://llvm.org/docs/lnt/concepts.html). + +If you want to run only specific benchmarks, you can use the positional argument +`top_level_path` appropriately. + +1. If you want to run benchmarks in a specific directory or a file, set + `top_level_path` to that. +2. If you want to run a specific benchmark function, set the `top_level_path` to + the file containing that benchmark function, followed by a `::`, and then the + benchmark function name. For example, `mlir/benchmark/python/benchmark_sparse.py::benchmark_sparse_mlir_multiplication`. + +## Configuration +Various aspects about the framework can be configured using the configuration +file in the `mbr/config.ini` relative to the directory of this README. diff --git a/mlir/utils/mbr/mbr/__init__.py b/mlir/utils/mbr/mbr/__init__.py new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mbr/__init__.py @@ -0,0 +1,13 @@ +"""The public API of this library is defined or imported here.""" +import dataclasses +import typing + + +@dataclasses.dataclass +class BenchmarkRunConfig: + """Any benchmark runnable by this library must return an instance of this + class. The `compiler` attribute is optional, for example for python + benchmarks. + """ + runner: typing.Callable + compiler: typing.Optional[typing.Callable] = None diff --git a/mlir/utils/mbr/mbr/config.ini b/mlir/utils/mbr/mbr/config.ini new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mbr/config.ini @@ -0,0 +1,9 @@ +[discovery] +function_prefix = benchmark_ +filename_prefix = benchmark_ + +[stats] +# 1 billion +max_number_of_measurements = 1e9 +# 10 seconds +max_time_for_a_benchmark_ns = 1e9 diff --git a/mlir/utils/mbr/mbr/discovery.py b/mlir/utils/mbr/mbr/discovery.py new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mbr/discovery.py @@ -0,0 +1,75 @@ +"""This file contains functions for discovering benchmark functions. It works +in a similar way to python's unittest library. +""" +import configparser +import importlib +import os +import pathlib +import re +import sys +import types + + +def discover_benchmark_modules(top_level_path): + """Starting from the `top_level_path`, discover python files which contains + benchmark functions. It looks for files with a specific prefix, which + defaults to "benchmark_" + """ + config = configparser.ConfigParser() + config.read( + os.path.join(os.path.dirname(os.path.realpath(__file__)), "config.ini") + ) + if "discovery" in config.sections(): + filename_prefix = config["discovery"]["filename_prefix"] + else: + filename_prefix = "benchmark_" + if re.search(fr"{filename_prefix}.*.py$", top_level_path): + # A specific python file so just include that. + benchmark_files = [top_level_path] + else: + # A directory so recursively search for all python files. + benchmark_files = pathlib.Path( + top_level_path + ).rglob(f"{filename_prefix}*.py") + for benchmark_filename in benchmark_files: + benchmark_abs_dir = os.path.abspath(os.path.dirname(benchmark_filename)) + sys.path.append(benchmark_abs_dir) + module_file_name = os.path.basename(benchmark_filename) + module_name = module_file_name.replace(".py", "") + module = importlib.import_module(module_name) + yield module + sys.path.pop() + + +def get_benchmark_functions(module, benchmark_function_name=None): + """Discover benchmark functions in python file. It looks for functions with + a specific prefix, which defaults to "benchmark_". + """ + config = configparser.ConfigParser() + config.read( + os.path.join(os.path.dirname(os.path.realpath(__file__)), "config.ini") + ) + if "discovery" in config.sections(): + function_prefix = config["discovery"].get("function_prefix") + else: + function_prefix = "benchmark_" + + module_functions = [] + for attribute_name in dir(module): + attribute = getattr(module, attribute_name) + if ( + isinstance(attribute, types.FunctionType) + and attribute_name.startswith(function_prefix) + ): + module_functions.append(attribute) + + if benchmark_function_name: + # If benchmark_function_name is present, just yield the corresponding + # function and nothing else. + for function in module_functions: + if function.__name__ == benchmark_function_name: + yield function + else: + # If benchmark_function_name is not present, yield all functions. + for function in module_functions: + yield function diff --git a/mlir/utils/mbr/mbr/main.py b/mlir/utils/mbr/mbr/main.py new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mbr/main.py @@ -0,0 +1,110 @@ +"""This file contains the main function that's called by the CLI of the library. +""" + +import os +import sys +import time + +import numpy as np + +from discovery import discover_benchmark_modules, get_benchmark_functions +from stats import has_enough_measurements + + +def main(top_level_path, stop_on_error): + """Top level function called when the CLI is invoked. + """ + if "::" in top_level_path: + if top_level_path.count("::") > 1: + raise AssertionError(f"Invalid path {top_level_path}") + top_level_path, benchmark_function_name = top_level_path.split("::") + else: + benchmark_function_name = None + + if not os.path.exists(top_level_path): + raise AssertionError( + f"The top-level path {top_level_path} doesn't exist" + ) + + modules = [module for module in discover_benchmark_modules(top_level_path)] + benchmark_dicts = [] + for module in modules: + benchmark_functions = [ + function for function in + get_benchmark_functions(module, benchmark_function_name) + ] + for benchmark_function in benchmark_functions: + try: + compiler, runner = benchmark_function() + except (TypeError, ValueError): + error_message = ( + f"benchmark_function '{benchmark_function.__name__}'" + f" must return a two tuple value (compiler, runner)." + ) + if stop_on_error is False: + print(error_message, file=sys.stderr) + continue + else: + raise AssertionError(error_message) + measurements_ns = np.array([]) + if compiler: + start_compile_time_s = time.time() + try: + compiled_callable = compiler() + except Exception as e: + error_message = ( + f"Compilation of {benchmark_function.__name__} failed" + f" because of {e}" + ) + if stop_on_error is False: + print(error_message, file=sys.stderr) + continue + else: + raise AssertionError(error_message) + total_compile_time_s = time.time() - start_compile_time_s + runner_args = (compiled_callable,) + else: + total_compile_time_s = 0 + runner_args = () + while not has_enough_measurements(measurements_ns): + try: + measurement_ns = runner(*runner_args) + except Exception as e: + error_message = ( + f"Runner of {benchmark_function.__name__} failed" + f" because of {e}" + ) + if stop_on_error is False: + print(error_message, file=sys.stderr) + # Recover from runner error by breaking out of this loop + # and continuing forward. + break + else: + raise AssertionError(error_message) + if not isinstance(measurement_ns, int): + error_message = ( + f"Expected benchmark runner function" + f" to return an int, got {measurement_ns}" + ) + if stop_on_error is False: + print(error_message, file=sys.stderr) + continue + else: + raise AssertionError(error_message) + measurements_ns = np.append(measurements_ns, measurement_ns) + + if len(measurements_ns) > 0: + measurements_s = [t * 1e-9 for t in measurements_ns] + benchmark_identifier = ":".join([ + module.__name__, + benchmark_function.__name__ + ]) + benchmark_dicts.append( + { + "name": benchmark_identifier, + "compile_time": total_compile_time_s, + "execution_time": list(measurements_s), + } + ) + + return benchmark_dicts diff --git a/mlir/utils/mbr/mbr/stats.py b/mlir/utils/mbr/mbr/stats.py new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mbr/stats.py @@ -0,0 +1,39 @@ +"""This file contains functions related to interpreting measurement results +of benchmarks. +""" +import configparser +import numpy as np +import os + + +def has_enough_measurements(measurements): + """Takes a list/numpy array of measurements and determines whether we have + enough measurements to make a confident judgement of the performance. The + criteria for determining whether we have enough measurements is as follows. + 1. Whether enough time, defaulting to 1 second, has passed. + 2. Whether we have a max number of measurements, defaulting to a billion. + + If 1. is true, 2. doesn't need to be true. + """ + config = configparser.ConfigParser() + config.read( + os.path.join(os.path.dirname(os.path.realpath(__file__)), "config.cfg") + ) + if "stats" in config: + stats_dict = { + "max_number_of_measurements": int( + float(config["stats"]["max_number_of_measurements"]) + ), + "max_time_for_a_benchmark_ns": int( + float(config["stats"]["max_time_for_a_benchmark_ns"]) + ), + } + else: + stats_dict = { + "max_number_of_measurements": 1e9, + "max_time_for_a_benchmark_ns": 1e9, + } + return ( + np.sum(measurements) >= stats_dict["max_time_for_a_benchmark_ns"] or + np.size(measurements) >= stats_dict["max_number_of_measurements"] + ) diff --git a/mlir/utils/mbr/mlir-mbr.in b/mlir/utils/mbr/mlir-mbr.in new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/mlir-mbr.in @@ -0,0 +1,86 @@ +#!@Python3_EXECUTABLE@ +# -*- coding: utf-8 -*- + +import argparse +import datetime +import json +import os +import sys + +from urllib import error as urlerror +from urllib import parse as urlparse +from urllib import request + + +mlir_source_root = "@MLIR_SOURCE_DIR@" +sys.path.insert(0, os.path.join(mlir_source_root, "utils", "mbr", "mbr")) + +from main import main + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument( + "--machine", + required=True, + help="A platform identifier on which the " + "benchmarks are run. For example" + " ---" + ) + parser.add_argument( + "--revision", + required=True, + help="The key used to identify different runs. " + "Could be anything as long as it" + " can be sorted by python's sort function" + ) + parser.add_argument( + "--url", + help="The lnt server url to send the results to", + default="http://localhost:8000/db_default/v4/nts/submitRun" + ) + parser.add_argument( + "--result-stdout", + help="Print benchmarking results to stdout instead" + " of sending it to lnt", + default=False, + action=argparse.BooleanOptionalAction + ) + parser.add_argument( + "top_level_path", + help="The top level path from which to search for benchmarks", + default=os.getcwd(), + ) + parser.add_argument( + "--stop_on_error", + help="Should we stop the benchmark run on errors? Defaults to false", + default=False, + ) + args = parser.parse_args() + + complete_benchmark_start_time = datetime.datetime.utcnow().isoformat() + benchmark_function_dicts = main(args.top_level_path, args.stop_on_error) + complete_benchmark_end_time = datetime.datetime.utcnow().isoformat() + lnt_dict = { + "format_version": "2", + "machine": {"name": args.machine}, + "run": { + "end_time": complete_benchmark_start_time, + "start_time": complete_benchmark_end_time, + "llvm_project_revision": args.revision + }, + "tests": benchmark_function_dicts, + "name": "MLIR benchmark suite" + } + lnt_json = json.dumps(lnt_dict, indent=4) + if args.result_stdout is True: + print(lnt_json) + else: + request_data = urlparse.urlencode( + {"input_data": lnt_json} + ).encode("ascii") + req = request.Request(args.url, request_data) + try: + resp = request.urlopen(req) + except urlerror.HTTPError as e: + print(e) diff --git a/mlir/utils/mbr/requirements.txt b/mlir/utils/mbr/requirements.txt new file mode 100644 diff --git a/mlir/utils/mbr/setup.py b/mlir/utils/mbr/setup.py new file mode 100644 --- /dev/null +++ b/mlir/utils/mbr/setup.py @@ -0,0 +1,14 @@ +from setuptools import setup +from setuptools import find_packages + + +setup( + name="mbr", + version="1.0.0", + packages=find_packages(), + entry_points={ + "console_scripts": [ + "mbr = mbr.main:main", + ], + }, +)