diff --git a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp --- a/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp +++ b/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp @@ -1743,7 +1743,8 @@ /// disabled or unsupported, then the scalable part will be equal to /// ElementCount::getScalable(0). FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, - ElementCount UserVF); + ElementCount UserVF, + bool FoldTailByMasking); /// \return the maximized element count based on the targets vector /// registers and the loop trip-count, but limited to a maximum safe VF. @@ -1756,7 +1757,8 @@ ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, - const ElementCount &MaxSafeVF); + const ElementCount &MaxSafeVF, + bool FoldTailByMasking); /// \return the maximum legal scalable VF, based on the safe max number /// of elements. @@ -5784,9 +5786,8 @@ return MaxScalableVF; } -FixedScalableVFPair -LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, - ElementCount UserVF) { +FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( + unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); unsigned SmallestType, WidestType; std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); @@ -5873,12 +5874,14 @@ FixedScalableVFPair Result(ElementCount::getFixed(1), ElementCount::getScalable(0)); - if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, - WidestType, MaxSafeFixedVF)) + if (auto MaxVF = + getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, + MaxSafeFixedVF, FoldTailByMasking)) Result.FixedVF = MaxVF; if (auto MaxVF = getMaximizedVFForTarget(ConstTripCount, SmallestType, - WidestType, MaxSafeScalableVF)) + WidestType, MaxSafeScalableVF, + FoldTailByMasking)) if (MaxVF.isScalable()) { Result.ScalableVF = MaxVF; LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVF @@ -5911,7 +5914,7 @@ switch (ScalarEpilogueStatus) { case CM_ScalarEpilogueAllowed: - return computeFeasibleMaxVF(TC, UserVF); + return computeFeasibleMaxVF(TC, UserVF, false); case CM_ScalarEpilogueNotAllowedUsePredicate: LLVM_FALLTHROUGH; case CM_ScalarEpilogueNotNeededUsePredicate: @@ -5949,7 +5952,7 @@ LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " "scalar epilogue instead.\n"); ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; - return computeFeasibleMaxVF(TC, UserVF); + return computeFeasibleMaxVF(TC, UserVF, false); } return FixedScalableVFPair::getNone(); } @@ -5966,7 +5969,7 @@ InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); } - FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF); + FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); // Avoid tail folding if the trip count is known to be a multiple of any VF // we chose. // FIXME: The condition below pessimises the case for fixed-width vectors, @@ -6039,7 +6042,7 @@ ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, - const ElementCount &MaxSafeVF) { + const ElementCount &MaxSafeVF, bool FoldTailByMasking) { bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); TypeSize WidestRegister = TTI.getRegisterBitWidth( ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector @@ -6071,14 +6074,16 @@ const auto TripCountEC = ElementCount::getFixed(ConstTripCount); if (ConstTripCount && ElementCount::isKnownLE(TripCountEC, MaxVectorElementCount) && - isPowerOf2_32(ConstTripCount)) { - // We need to clamp the VF to be the ConstTripCount. There is no point in - // choosing a higher viable VF as done in the loop below. If - // MaxVectorElementCount is scalable, we only fall back on a fixed VF when - // the TC is less than or equal to the known number of lanes. - LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " + (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { + // If loop trip count (TC) is known at compile time there is no point in + // choosing VF greater than TC (as done in the loop below). Select maximum + // power of two which doesn't exceed TC. + // If MaxVectorElementCount is scalable, we only fall back on a fixed VF + // when the TC is less than or equal to the known number of lanes. + LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not " + "exceeding the constant trip count: " << ConstTripCount << "\n"); - return TripCountEC; + return ElementCount::getFixed(PowerOf2Floor(ConstTripCount)); } ElementCount MaxVF = MaxVectorElementCount; diff --git a/llvm/test/Transforms/LoopVectorize/X86/known_TC.ll b/llvm/test/Transforms/LoopVectorize/X86/known_TC.ll --- a/llvm/test/Transforms/LoopVectorize/X86/known_TC.ll +++ b/llvm/test/Transforms/LoopVectorize/X86/known_TC.ll @@ -4,14 +4,13 @@ target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128-ni:1-p2:32:8:8:32-ni:2" target triple = "x86_64-unknown-linux-gnu" -; TODO: Make sure selected VF for the main loop doesn't exceed TC. ; TODO: Make sure selected VF for the epilog loop doesn't exceed remaining TC. define void @test1(i8 * noalias %src, i8 * noalias %dst) #0 { ; CHECK-LABEL: @test1( ; CHECK-NEXT: iter.check: -; CHECK-NEXT: br i1 true, label [[VEC_EPILOG_SCALAR_PH:%.*]], label [[VECTOR_MAIN_LOOP_ITER_CHECK:%.*]] +; CHECK-NEXT: br i1 false, label [[VEC_EPILOG_SCALAR_PH:%.*]], label [[VECTOR_MAIN_LOOP_ITER_CHECK:%.*]] ; CHECK: vector.main.loop.iter.check: -; CHECK-NEXT: br i1 true, label [[VEC_EPILOG_PH:%.*]], label [[VECTOR_PH:%.*]] +; CHECK-NEXT: br i1 false, label [[VEC_EPILOG_PH:%.*]], label [[VECTOR_PH:%.*]] ; CHECK: vector.ph: ; CHECK-NEXT: br label [[VECTOR_BODY:%.*]] ; CHECK: vector.body: @@ -19,42 +18,42 @@ ; CHECK-NEXT: [[TMP0:%.*]] = add i64 [[INDEX]], 0 ; CHECK-NEXT: [[TMP1:%.*]] = getelementptr inbounds i8, i8* [[SRC:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TMP2:%.*]] = getelementptr inbounds i8, i8* [[TMP1]], i32 0 -; CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[TMP2]] to <64 x i8>* -; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <64 x i8>, <64 x i8>* [[TMP3]], align 64 +; CHECK-NEXT: [[TMP3:%.*]] = bitcast i8* [[TMP2]] to <16 x i8>* +; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <16 x i8>, <16 x i8>* [[TMP3]], align 64 ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i8, i8* [[DST:%.*]], i64 [[TMP0]] ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i8, i8* [[TMP4]], i32 0 -; CHECK-NEXT: [[TMP6:%.*]] = bitcast i8* [[TMP5]] to <64 x i8>* -; CHECK-NEXT: store <64 x i8> [[WIDE_LOAD]], <64 x i8>* [[TMP6]], align 64 -; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 64 -; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], 0 +; CHECK-NEXT: [[TMP6:%.*]] = bitcast i8* [[TMP5]] to <16 x i8>* +; CHECK-NEXT: store <16 x i8> [[WIDE_LOAD]], <16 x i8>* [[TMP6]], align 64 +; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], 16 +; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], 16 ; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]] ; CHECK: middle.block: -; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 17, 0 +; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 17, 16 ; CHECK-NEXT: br i1 [[CMP_N]], label [[EXIT:%.*]], label [[VEC_EPILOG_ITER_CHECK:%.*]] ; CHECK: vec.epilog.iter.check: ; CHECK-NEXT: br i1 true, label [[VEC_EPILOG_SCALAR_PH]], label [[VEC_EPILOG_PH]] ; CHECK: vec.epilog.ph: -; CHECK-NEXT: [[VEC_EPILOG_RESUME_VAL:%.*]] = phi i64 [ 0, [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[VECTOR_MAIN_LOOP_ITER_CHECK]] ] +; CHECK-NEXT: [[VEC_EPILOG_RESUME_VAL:%.*]] = phi i64 [ 16, [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[VECTOR_MAIN_LOOP_ITER_CHECK]] ] ; CHECK-NEXT: br label [[VEC_EPILOG_VECTOR_BODY:%.*]] ; CHECK: vec.epilog.vector.body: ; CHECK-NEXT: [[INDEX1:%.*]] = phi i64 [ [[VEC_EPILOG_RESUME_VAL]], [[VEC_EPILOG_PH]] ], [ [[INDEX_NEXT2:%.*]], [[VEC_EPILOG_VECTOR_BODY]] ] ; CHECK-NEXT: [[TMP8:%.*]] = add i64 [[INDEX1]], 0 ; CHECK-NEXT: [[TMP9:%.*]] = getelementptr inbounds i8, i8* [[SRC]], i64 [[TMP8]] ; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i8, i8* [[TMP9]], i32 0 -; CHECK-NEXT: [[TMP11:%.*]] = bitcast i8* [[TMP10]] to <32 x i8>* -; CHECK-NEXT: [[WIDE_LOAD4:%.*]] = load <32 x i8>, <32 x i8>* [[TMP11]], align 64 +; CHECK-NEXT: [[TMP11:%.*]] = bitcast i8* [[TMP10]] to <8 x i8>* +; CHECK-NEXT: [[WIDE_LOAD4:%.*]] = load <8 x i8>, <8 x i8>* [[TMP11]], align 64 ; CHECK-NEXT: [[TMP12:%.*]] = getelementptr inbounds i8, i8* [[DST]], i64 [[TMP8]] ; CHECK-NEXT: [[TMP13:%.*]] = getelementptr inbounds i8, i8* [[TMP12]], i32 0 -; CHECK-NEXT: [[TMP14:%.*]] = bitcast i8* [[TMP13]] to <32 x i8>* -; CHECK-NEXT: store <32 x i8> [[WIDE_LOAD4]], <32 x i8>* [[TMP14]], align 64 -; CHECK-NEXT: [[INDEX_NEXT2]] = add nuw i64 [[INDEX1]], 32 -; CHECK-NEXT: [[TMP15:%.*]] = icmp eq i64 [[INDEX_NEXT2]], 0 +; CHECK-NEXT: [[TMP14:%.*]] = bitcast i8* [[TMP13]] to <8 x i8>* +; CHECK-NEXT: store <8 x i8> [[WIDE_LOAD4]], <8 x i8>* [[TMP14]], align 64 +; CHECK-NEXT: [[INDEX_NEXT2]] = add nuw i64 [[INDEX1]], 8 +; CHECK-NEXT: [[TMP15:%.*]] = icmp eq i64 [[INDEX_NEXT2]], 16 ; CHECK-NEXT: br i1 [[TMP15]], label [[VEC_EPILOG_MIDDLE_BLOCK:%.*]], label [[VEC_EPILOG_VECTOR_BODY]], !llvm.loop [[LOOP2:![0-9]+]] ; CHECK: vec.epilog.middle.block: -; CHECK-NEXT: [[CMP_N3:%.*]] = icmp eq i64 17, 0 +; CHECK-NEXT: [[CMP_N3:%.*]] = icmp eq i64 17, 16 ; CHECK-NEXT: br i1 [[CMP_N3]], label [[EXIT_LOOPEXIT:%.*]], label [[VEC_EPILOG_SCALAR_PH]] ; CHECK: vec.epilog.scalar.ph: -; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ 0, [[VEC_EPILOG_MIDDLE_BLOCK]] ], [ 0, [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[ITER_CHECK:%.*]] ] +; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ 16, [[VEC_EPILOG_MIDDLE_BLOCK]] ], [ 16, [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[ITER_CHECK:%.*]] ] ; CHECK-NEXT: br label [[LOOP_MEMCPY_EXPANSION:%.*]] ; CHECK: loop-memcpy-expansion: ; CHECK-NEXT: [[I:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[VEC_EPILOG_SCALAR_PH]] ], [ [[I_NEXT:%.*]], [[LOOP_MEMCPY_EXPANSION]] ]