diff --git a/mlir/test/Dialect/Linalg/pad.mlir b/mlir/test/Dialect/Linalg/pad.mlir --- a/mlir/test/Dialect/Linalg/pad.mlir +++ b/mlir/test/Dialect/Linalg/pad.mlir @@ -1,4 +1,5 @@ -// RUN: mlir-opt %s -test-linalg-transform-patterns="test-pad-pattern pack-paddings=1,1,0 hoist-paddings=0,0,0" -cse -canonicalize -split-input-file | FileCheck %s +// RUN: mlir-opt %s -test-linalg-codegen-strategy="anchor-op=linalg.matmul pad pack-paddings=1,1,0 run-enable-pass=false" -cse -canonicalize -split-input-file | FileCheck %s +// RUN: mlir-opt %s -test-linalg-codegen-strategy="anchor-op=linalg.fill pad pack-paddings=1,1,0 run-enable-pass=false" -cse -canonicalize -split-input-file | FileCheck %s --check-prefix=CHECK-FILL // CHECK-DAG: #[[MAP0:[0-9a-z]+]] = affine_map<(d0) -> (7, -d0 + 12)> #map = affine_map<(d0) -> (7, -d0 + 12)> @@ -50,7 +51,7 @@ // CHECK-SAME: ins(%[[T3]], %[[T4]] : tensor<4x7xf32>, tensor<7x5xf32>) // CHECK-SAME: outs(%[[T2]] : tensor<4x5xf32>) // CHECK: %[[T6:.*]] = tensor.insert_slice %[[T5]] - %7 = linalg.matmul {__internal_linalg_transform__ = "pad"} ins(%4, %5 : tensor<4x?xf32>, tensor) outs(%6 : tensor<4x5xf32>) -> tensor<4x5xf32> + %7 = linalg.matmul ins(%4, %5 : tensor<4x?xf32>, tensor) outs(%6 : tensor<4x5xf32>) -> tensor<4x5xf32> %8 = tensor.insert_slice %7 into %arg8[%arg3, %arg5] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32> // CHECK: scf.yield %[[T6]] @@ -109,7 +110,7 @@ // CHECK-SAME: outs(%[[T1]] : tensor<4x7xf32>) // CHECK: %[[T3:.*]] = tensor.extract_slice %[[T2]] // CHECK: %[[T4:.*]] = tensor.insert_slice %[[T3]] - %7 = linalg.matmul {__internal_linalg_transform__ = "pad"} ins(%3, %5 : tensor<4x6xf32>, tensor<6x?xf32>) outs(%6 : tensor<4x?xf32>) -> tensor<4x?xf32> + %7 = linalg.matmul ins(%3, %5 : tensor<4x6xf32>, tensor<6x?xf32>) outs(%6 : tensor<4x?xf32>) -> tensor<4x?xf32> %8 = tensor.insert_slice %7 into %arg8[%arg3, %arg5] [4, %4] [1, 1] : tensor<4x?xf32> into tensor<24x25xf32> // CHECK: scf.yield %[[T4]] @@ -192,7 +193,7 @@ // CHECK-SAME: outs(%[[T5]] : tensor<5x7xf32>) // CHECK: %[[T7:.*]] = tensor.extract_slice %[[T6]][0, 0] [%[[TS0]], %[[TS1]]] // CHECK: %[[T8:.*]] = tensor.insert_slice %[[T7]] - %12 = linalg.matmul {__internal_linalg_transform__ = "pad"} ins(%8, %10 : tensor, tensor) outs(%11 : tensor) -> tensor + %12 = linalg.matmul ins(%8, %10 : tensor, tensor) outs(%11 : tensor) -> tensor %13 = tensor.insert_slice %12 into %arg8[%arg3, %arg5] [%6, %9] [1, 1] : tensor into tensor // CHECK: scf.yield %[[T8]] @@ -209,9 +210,9 @@ #map = affine_map<(d0) -> (7, -d0 + 12)> -// CHECK: scalar_operand -// CHECK-SAME: %[[ARG0:[0-9a-zA-Z]*]]: f32 -// CHECK-SAME: %[[ARG1:[0-9a-zA-Z]*]]: tensor<24x12xf32> +// CHECK-FILL: scalar_operand +// CHECK-FILL-SAME: %[[ARG0:[0-9a-zA-Z]*]]: f32 +// CHECK-FILL-SAME: %[[ARG1:[0-9a-zA-Z]*]]: tensor<24x12xf32> func @scalar_operand(%arg0: f32, %arg1: tensor<24x12xf32>) -> tensor<24x12xf32> { %c0 = arith.constant 0 : index %c12 = arith.constant 12 : index @@ -219,20 +220,20 @@ %c7 = arith.constant 7 : index %c4 = arith.constant 4 : index - // CHECK: scf.for %[[IV0:[0-9a-zA-Z]*]] = + // CHECK-FILL: scf.for %[[IV0:[0-9a-zA-Z]*]] = %0 = scf.for %arg2 = %c0 to %c24 step %c4 iter_args(%arg3 = %arg1) -> (tensor<24x12xf32>) { - // CHECK: scf.for %[[IV1:[0-9a-zA-Z]*]] = {{.*}} iter_args(%[[ARG2:.*]] = + // CHECK-FILL: scf.for %[[IV1:[0-9a-zA-Z]*]] = {{.*}} iter_args(%[[ARG2:.*]] = %1 = scf.for %arg4 = %c0 to %c12 step %c7 iter_args(%arg5 = %arg3) -> (tensor<24x12xf32>) { %2 = affine.min #map(%arg4) - // CHECK: %[[T0:.*]] = tensor.extract_slice %[[ARG2]] - // CHECK: %[[T1:.*]] = linalg.pad_tensor %[[T0]] nofold + // CHECK-FILL: %[[T0:.*]] = tensor.extract_slice %[[ARG2]] + // CHECK-FILL: %[[T1:.*]] = linalg.pad_tensor %[[T0]] nofold %3 = tensor.extract_slice %arg5[%arg2, %arg4] [4, %2] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32> // Check only the fill output operand is padded. - // CHECK: %[[T6:.*]] = linalg.fill(%[[ARG0]], %[[T1]] - %4 = linalg.fill(%arg0, %3) {__internal_linalg_transform__ = "pad"} : f32, tensor<4x?xf32> -> tensor<4x?xf32> + // CHECK-FILL: %[[T6:.*]] = linalg.fill(%[[ARG0]], %[[T1]] + %4 = linalg.fill(%arg0, %3) : f32, tensor<4x?xf32> -> tensor<4x?xf32> %5 = tensor.insert_slice %4 into %arg5[%arg2, %arg4] [4, %2] [1, 1] : tensor<4x?xf32> into tensor<24x12xf32> scf.yield %5 : tensor<24x12xf32> }