diff --git a/llvm/include/llvm/Support/DivisionMagic.h b/llvm/include/llvm/Support/DivisionMagic.h new file mode 100644 --- /dev/null +++ b/llvm/include/llvm/Support/DivisionMagic.h @@ -0,0 +1,41 @@ +//===--- llvm/Support/DivisonMagic.h - division by constant -*- C++ -*-----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// This file implements support for optimizing divisions by a constant +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_DIVISON_MAGIC_H +#define LLVM_SUPPORT_DIVISON_MAGIC_H + +#include "llvm/ADT/APInt.h" + +namespace llvm { + +/// Magic data for optimising signed division by a constant. +struct MagicSigned { + APInt m; ///< magic number + unsigned s; ///< shift amount +}; + +/// Magic data for optimising unsigned division by a constant. +struct MagicUnsigned { + APInt m; ///< magic number + bool a; ///< add indicator + unsigned s; ///< shift amount +}; + +/// Calculate the magic number for unsigned division by a constant. +MagicUnsigned magicu(const APInt &d, unsigned LeadingZeros = 0); + +/// Calculate the magic number for signed division by a constant. +MagicSigned magic(const APInt &d); + +} // namespace llvm + +#endif diff --git a/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp b/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp --- a/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp +++ b/llvm/lib/CodeGen/SelectionDAG/TargetLowering.cpp @@ -26,6 +26,7 @@ #include "llvm/IR/LLVMContext.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" +#include "llvm/Support/DivisionMagic.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" @@ -5121,112 +5122,6 @@ return SDValue(); } -namespace { -/// Magic data for optimising signed division by a constant. -struct ms { - APInt m; ///< magic number - unsigned s; ///< shift amount -}; - -/// Magic data for optimising unsigned division by a constant. -struct mu { - APInt m; ///< magic number - bool a; ///< add indicator - unsigned s; ///< shift amount -}; -} // namespace - -/// Calculate the magic numbers required to implement an unsigned integer -/// division by a constant as a sequence of multiplies, adds and shifts. -/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry -/// S. Warren, Jr., chapter 10. -/// LeadingZeros can be used to simplify the calculation if the upper bits -/// of the divided value are known zero. -static mu magicu(const APInt &d, unsigned LeadingZeros = 0) { - unsigned p; - APInt nc, delta, q1, r1, q2, r2; - struct mu magu; - magu.a = 0; // initialize "add" indicator - APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros); - APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); - APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); - - nc = allOnes - (allOnes - d).urem(d); - p = d.getBitWidth() - 1; // initialize p - q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc - r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc) - q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d - r2 = signedMax - q2 * d; // initialize r2 = rem((2p-1),d) - do { - p = p + 1; - if (r1.uge(nc - r1)) { - q1 = q1 + q1 + 1; // update q1 - r1 = r1 + r1 - nc; // update r1 - } else { - q1 = q1 + q1; // update q1 - r1 = r1 + r1; // update r1 - } - if ((r2 + 1).uge(d - r2)) { - if (q2.uge(signedMax)) - magu.a = 1; - q2 = q2 + q2 + 1; // update q2 - r2 = r2 + r2 + 1 - d; // update r2 - } else { - if (q2.uge(signedMin)) - magu.a = 1; - q2 = q2 + q2; // update q2 - r2 = r2 + r2 + 1; // update r2 - } - delta = d - 1 - r2; - } while (p < d.getBitWidth() * 2 && - (q1.ult(delta) || (q1 == delta && r1 == 0))); - magu.m = q2 + 1; // resulting magic number - magu.s = p - d.getBitWidth(); // resulting shift - return magu; -} - -/// Calculate the magic numbers required to implement a signed integer division -/// by a constant as a sequence of multiplies, adds and shifts. Requires that -/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. -/// Warren, Jr., Chapter 10. -static ms magic(const APInt &d) { - unsigned p; - APInt ad, anc, delta, q1, r1, q2, r2, t; - APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); - struct ms mag; - - ad = d.abs(); - t = signedMin + (d.lshr(d.getBitWidth() - 1)); - anc = t - 1 - t.urem(ad); // absolute value of nc - p = d.getBitWidth() - 1; // initialize p - q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) - r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc)) - q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) - r2 = signedMin - q2 * ad; // initialize r2 = rem(2p,abs(d)) - do { - p = p + 1; - q1 = q1 << 1; // update q1 = 2p/abs(nc) - r1 = r1 << 1; // update r1 = rem(2p/abs(nc)) - if (r1.uge(anc)) { // must be unsigned comparison - q1 = q1 + 1; - r1 = r1 - anc; - } - q2 = q2 << 1; // update q2 = 2p/abs(d) - r2 = r2 << 1; // update r2 = rem(2p/abs(d)) - if (r2.uge(ad)) { // must be unsigned comparison - q2 = q2 + 1; - r2 = r2 - ad; - } - delta = ad - r2; - } while (q1.ult(delta) || (q1 == delta && r1 == 0)); - - mag.m = q2 + 1; - if (d.isNegative()) - mag.m = -mag.m; // resulting magic number - mag.s = p - d.getBitWidth(); // resulting shift - return mag; -} - /// Given an ISD::SDIV node expressing a divide by constant, /// return a DAG expression to select that will generate the same value by /// multiplying by a magic number. @@ -5271,7 +5166,7 @@ return false; const APInt &Divisor = C->getAPIntValue(); - ms magics = magic(Divisor); + MagicSigned magics = magic(Divisor); int NumeratorFactor = 0; int ShiftMask = -1; @@ -5417,7 +5312,7 @@ // FIXME: We should use a narrower constant when the upper // bits are known to be zero. const APInt& Divisor = C->getAPIntValue(); - mu magics = magicu(Divisor); + MagicUnsigned magics = magicu(Divisor); unsigned PreShift = 0, PostShift = 0; // If the divisor is even, we can avoid using the expensive fixup by diff --git a/llvm/lib/Support/CMakeLists.txt b/llvm/lib/Support/CMakeLists.txt --- a/llvm/lib/Support/CMakeLists.txt +++ b/llvm/lib/Support/CMakeLists.txt @@ -137,6 +137,7 @@ Debug.cpp DebugCounter.cpp DeltaAlgorithm.cpp + DivisionMagic.cpp DAGDeltaAlgorithm.cpp DJB.cpp ELFAttributeParser.cpp diff --git a/llvm/lib/Support/DivisionMagic.cpp b/llvm/lib/Support/DivisionMagic.cpp new file mode 100644 --- /dev/null +++ b/llvm/lib/Support/DivisionMagic.cpp @@ -0,0 +1,106 @@ +//===------------- DivisonMagic.cpp - division by constant -*- C++ -*------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// This file implements support for optimizing divisions by a constant +/// +//===----------------------------------------------------------------------===// + +#include "llvm/Support/DivisionMagic.h" + +using namespace llvm; + +/// Calculate the magic numbers required to implement an unsigned integer +/// division by a constant as a sequence of multiplies, adds and shifts. +/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry +/// S. Warren, Jr., chapter 10. +/// LeadingZeros can be used to simplify the calculation if the upper bits +/// of the divided value are known zero. +MagicUnsigned magicu(const APInt &d, unsigned LeadingZeros = 0) { + unsigned p; + APInt nc, delta, q1, r1, q2, r2; + struct MagicUnsigned magu; + magu.a = 0; // initialize "add" indicator + APInt allOnes = APInt::getAllOnes(d.getBitWidth()).lshr(LeadingZeros); + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); + + nc = allOnes - (allOnes - d).urem(d); + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc + r1 = signedMin - q1 * nc; // initialize r1 = rem(2p,nc) + q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d + r2 = signedMax - q2 * d; // initialize r2 = rem((2p-1),d) + do { + p = p + 1; + if (r1.uge(nc - r1)) { + q1 = q1 + q1 + 1; // update q1 + r1 = r1 + r1 - nc; // update r1 + } else { + q1 = q1 + q1; // update q1 + r1 = r1 + r1; // update r1 + } + if ((r2 + 1).uge(d - r2)) { + if (q2.uge(signedMax)) + magu.a = 1; + q2 = q2 + q2 + 1; // update q2 + r2 = r2 + r2 + 1 - d; // update r2 + } else { + if (q2.uge(signedMin)) + magu.a = 1; + q2 = q2 + q2; // update q2 + r2 = r2 + r2 + 1; // update r2 + } + delta = d - 1 - r2; + } while (p < d.getBitWidth() * 2 && + (q1.ult(delta) || (q1 == delta && r1 == 0))); + magu.m = q2 + 1; // resulting magic number + magu.s = p - d.getBitWidth(); // resulting shift + return magu; +} + +/// Calculate the magic numbers required to implement a signed integer division +/// by a constant as a sequence of multiplies, adds and shifts. Requires that +/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. +/// Warren, Jr., Chapter 10. +MagicSigned magic(const APInt &d) { + unsigned p; + APInt ad, anc, delta, q1, r1, q2, r2, t; + APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); + struct MagicSigned mag; + + ad = d.abs(); + t = signedMin + (d.lshr(d.getBitWidth() - 1)); + anc = t - 1 - t.urem(ad); // absolute value of nc + p = d.getBitWidth() - 1; // initialize p + q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) + r1 = signedMin - q1 * anc; // initialize r1 = rem(2p,abs(nc)) + q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) + r2 = signedMin - q2 * ad; // initialize r2 = rem(2p,abs(d)) + do { + p = p + 1; + q1 = q1 << 1; // update q1 = 2p/abs(nc) + r1 = r1 << 1; // update r1 = rem(2p/abs(nc)) + if (r1.uge(anc)) { // must be unsigned comparison + q1 = q1 + 1; + r1 = r1 - anc; + } + q2 = q2 << 1; // update q2 = 2p/abs(d) + r2 = r2 << 1; // update r2 = rem(2p/abs(d)) + if (r2.uge(ad)) { // must be unsigned comparison + q2 = q2 + 1; + r2 = r2 - ad; + } + delta = ad - r2; + } while (q1.ult(delta) || (q1 == delta && r1 == 0)); + + mag.m = q2 + 1; + if (d.isNegative()) + mag.m = -mag.m; // resulting magic number + mag.s = p - d.getBitWidth(); // resulting shift + return mag; +} \ No newline at end of file