diff --git a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp --- a/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp +++ b/mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferize.cpp @@ -139,6 +139,9 @@ #define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ") #define LDBG(X) LLVM_DEBUG(DBGS() << X) +// TODO: from some HW description. +static constexpr int64_t kBufferAlignments = 128; + // Forward declarations. static std::string printOperationInfo(Operation *, bool prefix = true); static std::string printValueInfo(Value, bool prefix = true); @@ -1412,6 +1415,21 @@ // Bufferization-specific scoped alloc/dealloc insertion support. //===----------------------------------------------------------------------===// +template +Operation *getFirstParentOfType(Value v) { + Operation *parent; + if (auto bbArg = v.dyn_cast()) + parent = bbArg.getOwner()->getParentOp(); + else + parent = v.getDefiningOp()->getParentOp(); + while (parent) { + if (isa(parent)) + return parent; + parent = parent->getParentOp(); + } + return nullptr; +} + /// Create an Allocop/DeAllocOp pair, where the AllocOp is after /// `shapedValue.getDefiningOp` (or at the top of the block in case of a /// bbArg) and the DeallocOp is at the end of the block. @@ -1446,8 +1464,27 @@ if (dim.value() == ShapedType::kDynamicSize) dynShape.push_back(createOrFoldDimOp(b, loc, shapedValue, dim.index())); - Value allocated = b.create(loc, allocMemRefType, dynShape); - aliasInfo.createAliasInfoEntry(allocated); + // If the buffer is statically shaped, try to hoist it to the first enclosing + // parallel region. + // TODO: this concept of parallel region and threadlocal needs interfaces. + // TODO: also hoist in the dynamic case. For now this relies on subsequent + // calls to LICM and buffer hoisting which will most likely not succeed. + // TODO: when packing, allocate a static bounding box which will enable more + // hoisting. + Value allocated; + { // Guarded insertion point to potentially hoist the AllocOp. + OpBuilder::InsertionGuard g(b); + if (dynShape.empty()) { + Operation *parent = + getFirstParentOfType(shapedValue); + if (parent) + b.setInsertionPointToStart(&(parent->getRegion(0).front())); + } + allocated = b.create( + loc, allocMemRefType, dynShape, b.getI64IntegerAttr(kBufferAlignments)); + aliasInfo.createAliasInfoEntry(allocated); + } Value casted = allocated; if (memRefType != allocMemRefType) { casted = b.create(loc, memRefType, allocated); @@ -1476,6 +1513,7 @@ BufferizationAliasInfo &aliasInfo) { // Take a guard before anything else. OpBuilder::InsertionGuard g(b); + b.setInsertionPointAfter(op); // TODO: provide the proper interface to iterate on OpResults and get the // matching OpOperands. @@ -1498,7 +1536,6 @@ Value dimTensor = bvm.lookupOrDefault(output); Value alloc = createNewAllocDeallocPairForShapedValue(b, loc, dimTensor, aliasInfo); - b.setInsertionPointAfter(alloc.getDefiningOp()); resultBuffers.push_back(alloc); // Additionally, if the output buffer is used, clone its value for now. @@ -1785,8 +1822,12 @@ if (getInPlace(opResult) != InPlaceSpec::True) { resultBuffer = createNewAllocDeallocPairForShapedValue(b, loc, operand, aliasInfo); - // If the tensor comes from `linalg::InitTensorOp`, the value is - // unitialized and we do not need to copy. + // If the tensor comes from either: + // - linalg.init_tensor + // - tensor.cast(linalg.init_tensor()) + // Then the value is unitialized and we do not need to copy. This is a + // pragmatic simplification of "matching bbArg does not bufferize to a + // read". // TODO: "matching bbArg does not bufferize to a read" is a more general // check. if (!isInitTensorOp(operand)) @@ -1870,6 +1911,10 @@ static LogicalResult bufferize(OpBuilder &b, TiledLoopOp tiledLoopOp, BlockAndValueMapping &bvm, BufferizationAliasInfo &aliasInfo) { + // Take a guard before anything else. + OpBuilder::InsertionGuard g(b); + b.setInsertionPoint(tiledLoopOp); + // Allocate output buffers if needed, forward output tensor args to the // terminator. Operation *yieldOp = tiledLoopOp.getBody()->getTerminator(); @@ -1912,8 +1957,12 @@ auto loc = tiledLoopOp.getLoc(); Value alloc = createNewAllocDeallocPairForShapedValue( b, loc, oldOutputTensor, aliasInfo); - // If the tensor comes from `linalg::InitTensorOp`, the value is - // unitialized and we do not need to copy. + // If the tensor comes from either: + // - linalg.init_tensor + // - tensor.cast(linalg.init_tensor()) + // Then the value is unitialized and we do not need to copy. This is a + // pragmatic simplification of "matching bbArg does not bufferize to a + // read". // TODO: "matching bbArg does not bufferize to a read" is a more general // check. if (!isInitTensorOp(oldOutputTensor)) { @@ -2021,11 +2070,9 @@ // If not inplaceable, alloc. Value alloc; auto inPlace = getInPlace(extractSliceOp->getResult(0)); - if (inPlace != InPlaceSpec::True) { + if (inPlace != InPlaceSpec::True) alloc = createNewAllocDeallocPairForShapedValue( b, loc, extractSliceOp.result(), aliasInfo); - b.setInsertionPointAfter(alloc.getDefiningOp()); - } // Bufferize to subview. auto subviewMemRefType = @@ -2070,9 +2117,10 @@ // cloning the whole tensor on every single iteration and is a symptom // of a catastrophically bad scheduling decision. // TODO: be very loud about it or even consider failing the pass. + // Alloc a copy for `insertSliceOp.dest()`, it will become the result + // buffer. Value newDstMemref = createNewAllocDeallocPairForShapedValue( - b, loc, insertSliceOp.result(), aliasInfo); - b.setInsertionPointAfter(newDstMemref.getDefiningOp()); + b, loc, insertSliceOp.dest(), aliasInfo); b.create(insertSliceOp.getLoc(), dstMemref, newDstMemref); dstMemref = newDstMemref; } @@ -2138,10 +2186,11 @@ // If transfer_write is not inPlace, allocate a new buffer. Value newInputBuffer; if (inPlace != InPlaceSpec::True) { + // Alloc a copy for `writeOp.source()`, it will become the result buffer. newInputBuffer = createNewAllocDeallocPairForShapedValue( - b, loc, writeOp.result(), aliasInfo); - b.setInsertionPointAfter(newInputBuffer.getDefiningOp()); - map(bvm, writeOp.result(), newInputBuffer); + b, loc, writeOp.source(), aliasInfo); + Value v = lookup(bvm, writeOp.source()); + b.create(loc, v, newInputBuffer); } else { // InPlace write will result in memref.tensor_load(x) which must // canonicalize away with one of it uses. diff --git a/mlir/test/Dialect/Linalg/comprehensive-foo.mlir b/mlir/test/Dialect/Linalg/comprehensive-foo.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Dialect/Linalg/comprehensive-foo.mlir @@ -0,0 +1,67 @@ +// RUN: mlir-opt %s -linalg-comprehensive-module-bufferize -debug -verify-each=1 + +func @matmul( + %A: tensor<128x256xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = false}, + %B: tensor<256x192xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = false}, + %C: tensor<128x192xf32> {linalg.buffer_layout = affine_map<(d0, d1) -> (d0, d1)>, linalg.inplaceable = true}) + -> tensor<128x192xf32> { + %c0 = constant 0 : index + %c256 = constant 256 : index + %c32 = constant 32 : index + %cst = constant 0.000000e+00 : f32 + %c128 = constant 128 : index + %c192 = constant 192 : index + %c8 = constant 8 : index + %c16 = constant 16 : index + + // CHECK: scf.for %[[I:.*]] = + %0 = scf.for %arg3 = %c0 to %c128 step %c8 iter_args(%arg4 = %C) -> (tensor<128x192xf32>) { + %1 = tensor.extract_slice %A[%arg3, 0] [8, 256] [1, 1] : + tensor<128x256xf32> to tensor<8x256xf32> + + // CHECK: scf.for %[[J:.*]] = + %2 = scf.for %arg5 = %c0 to %c192 step %c16 iter_args(%arg6 = %arg4) -> (tensor<128x192xf32>) { + %3 = tensor.extract_slice %B[0, %arg5] [256, 16] [1, 1] : + tensor<256x192xf32> to tensor<256x16xf32> + + // %4 does not match an insert_slice, it cannot be bufferized inplace and needs to alloc. + // CHECK: %[[ALLOC:.*]] = memref.alloc() : memref<8x16xf32> + // CHECK: %[[T:.*]] = memref.subview %[[C]][%[[I]], %[[J]]] [8, 16] [1, 1] + // TODO: %4 is never read but just overwritten, this copy can be elided. + // CHECK: linalg.copy(%[[T]], %[[ALLOC]]) + %4 = tensor.extract_slice %C[%arg3, %arg5] [8, 16] [1, 1] : + tensor<128x192xf32> to tensor<8x16xf32> + + // linalg.fill is inplace. + // CHECK: linalg.fill(%{{.*}}, %[[ALLOC]]) : f32, memref<8x16xf32> + %5 = linalg.fill(%cst, %4) : f32, tensor<8x16xf32> -> tensor<8x16xf32> + + // CHECK: scf.for %[[K:.*]] = + %6 = scf.for %arg7 = %c0 to %c256 step %c32 iter_args(%arg8 = %5) -> (tensor<8x16xf32>) { + %8 = tensor.extract_slice %1[0, %arg7] [8, 32] [1, 1] : + tensor<8x256xf32> to tensor<8x32xf32> + %9 = tensor.extract_slice %3[%arg7, 0] [32, 16] [1, 1] : + tensor<256x16xf32> to tensor<32x16xf32> + + // linalg.matmul is inplace as well as the enclosing scf.for. + // CHECK: linalg.matmul ins({{.*}} outs(%[[ALLOC]] + %10 = linalg.matmul ins(%8, %9 : tensor<8x32xf32>, tensor<32x16xf32>) + outs(%arg8 : tensor<8x16xf32>) + -> tensor<8x16xf32> + scf.yield %10 : tensor<8x16xf32> + } + + // insert_slice is inplace but its source comes from an equivalent buffer + // that is not in place. So we must insert a copy of the small buffer into + // the bigger buffer. + // CHECK: linalg.copy(%[[ALLOC]], %[[T]]) + %7 = tensor.insert_slice %6 into %arg6[%arg3, %arg5] [8, 16] [1, 1] : + tensor<8x16xf32> into tensor<128x192xf32> + + // CHECK: memref.dealloc %[[ALLOC]] + scf.yield %7 : tensor<128x192xf32> + } + scf.yield %2 : tensor<128x192xf32> + } + return %0 : tensor<128x192xf32> +} diff --git a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir --- a/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir +++ b/mlir/test/Dialect/Linalg/comprehensive-module-bufferize.mlir @@ -57,7 +57,7 @@ %f0 = constant 0.0 : f32 // CHECK: %[[D0:.*]] = memref.dim %[[A]], {{.*}} : memref - // CHECK: %[[ALLOC:.*]] = memref.alloc(%[[D0]]) : memref + // CHECK: %[[ALLOC:.*]] = memref.alloc(%[[D0]]) {alignment = 128 : i64} : memref // CHECK: linalg.fill(%[[F0]], %[[ALLOC]]) : f32, memref %r = linalg.fill(%f0, %A) : f32, tensor -> tensor @@ -133,6 +133,7 @@ /// Cross-op multiple uses of %A, the first vector.transfer which has interfering reads must alloc. // CHECK: %[[ALLOC:.*]] = memref.alloc + // CHECK: linalg.copy({{.*}}, %[[ALLOC]]) // CHECK-NEXT: vector.transfer_write {{.*}}, %[[ALLOC]] %r0 = vector.transfer_write %vec, %A[%c0] : vector<4xf32>, tensor @@ -161,22 +162,24 @@ %t1 : tensor<4xf32> {linalg.inplaceable = true}) -> (tensor, tensor, tensor, tensor) { - // Alloc and copy the whole result tensor. Copy the tensor.extract_slice. + // Hoisted allocs. + // CHECK: %[[REALLOC_A1:.*]] = memref.alloc + // CHECK: %[[REALLOC_A0_2:.*]] = memref.alloc // CHECK: %[[REALLOC_A0:.*]] = memref.alloc + + // Alloc and copy the whole result tensor. Copy the tensor.extract_slice. // CHECK: linalg.copy(%[[A0]], %[[REALLOC_A0]] // CHECK: %[[SV_A0:.*]] = memref.subview %[[REALLOC_A0]] // CHECK: linalg.copy(%[[t0]], %[[SV_A0]]) %r0 = tensor.insert_slice %t0 into %A0[0][4][1] : tensor<4xf32> into tensor // Alloc and copy the whole result tensor. Copy the tensor.extract_slice. - // CHECK: %[[REALLOC_A0_2:.*]] = memref.alloc // CHECK: linalg.copy(%[[A0]] // CHECK: %[[SV_A0_2:.*]] = memref.subview %[[REALLOC_A0_2]] // CHECK: linalg.copy(%[[t1]], %[[SV_A0_2]]) %r1 = tensor.insert_slice %t1 into %A0[0][4][1] : tensor<4xf32> into tensor // Still alloc the large tensor because %A1 is read after. Copy the tensor.extract_slice. - // CHECK: %[[REALLOC_A1:.*]] = memref.alloc // CHECK: linalg.copy(%[[A1]] // CHECK: %[[SV_A1:.*]] = memref.subview %[[REALLOC_A1]] // CHECK: linalg.copy(%[[t0]], %[[SV_A1]]) @@ -255,7 +258,7 @@ func @insert_slice_fun_not_inplace(%A : tensor, %t : tensor<4xf32>) -> tensor { - // CHECK: %[[ALLOC:.*]] = memref.alloc(%{{.*}}) : memref + // CHECK: %[[ALLOC:.*]] = memref.alloc(%{{.*}}) {alignment = 128 : i64} : memref // CHECK: linalg.copy(%[[A]], %[[ALLOC]]) : memref // CHECK: %[[SV:.*]] = memref.subview %[[ALLOC]][0] [4] [1] : memref to memref<4xf32> // CHECK: linalg.copy(%[[t]], %[[SV]]) : memref<4xf32, #map>, memref<4xf32> @@ -285,7 +288,7 @@ // fill would interfere with %r0 that is also being returned. // So we need to bufferize it out of place and make a new alloc. - // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc({{.*}}) : memref + // CHECK-DAG: %[[ALLOC:.*]] = memref.alloc({{.*}}) {alignment = 128 : i64} : memref // CHECK: linalg.fill(%{{.*}}, %[[ALLOC]] %r1 = linalg.fill(%f0, %A) : f32, tensor -> tensor @@ -489,9 +492,9 @@ %v1 = constant 1.0 : f32 %v2 = constant 2.0 : f32 - // CHECK-NEXT: %[[A:.*]] = memref.alloc() : memref<64xf32> - // CHECK-NEXT: %[[B:.*]] = memref.alloc() : memref<64xf32> - // CHECK-NEXT: %[[C:.*]] = memref.alloc() : memref + // CHECK-NEXT: %[[C:.*]] = memref.alloc() {alignment = 128 : i64} : memref + // CHECK-NEXT: %[[B:.*]] = memref.alloc() {alignment = 128 : i64} : memref<64xf32> + // CHECK-NEXT: %[[A:.*]] = memref.alloc() {alignment = 128 : i64} : memref<64xf32> %A = linalg.init_tensor [64] : tensor<64xf32> %B = linalg.init_tensor [64] : tensor<64xf32> %C = linalg.init_tensor [] : tensor @@ -686,6 +689,9 @@ %c8 = constant 8 : index %c16 = constant 16 : index + // Hoisted alloc. + // CHECK: %[[ALLOC:.*]] = memref.alloc() {alignment = 128 : i64} : memref<8x16xf32> + // CHECK: scf.for %[[I:.*]] = %0 = scf.for %arg3 = %c0 to %c128 step %c8 iter_args(%arg4 = %C) -> (tensor<128x192xf32>) { %1 = tensor.extract_slice %A[%arg3, 0] [8, 256] [1, 1] : @@ -697,7 +703,6 @@ tensor<256x192xf32> to tensor<256x16xf32> // %4 does not match an insert_slice, it cannot be bufferized inplace and needs to alloc. - // CHECK: %[[ALLOC:.*]] = memref.alloc() : memref<8x16xf32> // CHECK: %[[T:.*]] = memref.subview %[[C]][%[[I]], %[[J]]] [8, 16] [1, 1] // TODO: %4 is never read but just overwritten, this copy can be elided. // CHECK: linalg.copy(%[[T]], %[[ALLOC]])