diff --git a/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir new file mode 100644 --- /dev/null +++ b/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_storage.mlir @@ -0,0 +1,194 @@ +// RUN: mlir-opt %s \ +// RUN: --sparsification --sparse-tensor-conversion \ +// RUN: --convert-vector-to-scf --convert-scf-to-std \ +// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \ +// RUN: --std-bufferize --finalizing-bufferize \ +// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm | \ +// RUN: mlir-cpu-runner \ +// RUN: -e entry -entry-point-result=void \ +// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \ +// RUN: FileCheck %s + +// +// Several common sparse storage schemes. +// + +#Dense = #sparse_tensor.encoding<{ + dimLevelType = [ "dense", "dense" ] +}> + +#CSR = #sparse_tensor.encoding<{ + dimLevelType = [ "dense", "compressed" ] +}> + +#DCSR = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed", "compressed" ] +}> + +#CSC = #sparse_tensor.encoding<{ + dimLevelType = [ "dense", "compressed" ], + dimOrdering = affine_map<(i,j) -> (j,i)> +}> + +#DCSC = #sparse_tensor.encoding<{ + dimLevelType = [ "compressed", "compressed" ], + dimOrdering = affine_map<(i,j) -> (j,i)> +}> + +// +// Integration test that looks "under the hood" of sparse storage schemes. +// +module { + // + // Main driver that initializes a sparse tensor and inspects the sparse + // storage schemes in detail. Note that users of the MLIR sparse compiler + // are typically not concerned with such details, but the test ensures + // everything is working "under the hood". + // + func @entry() { + %c0 = constant 0 : index + %c1 = constant 1 : index + %d0 = constant 0.0 : f64 + + // + // Initialize a dense tensor. + // + %t = constant dense<[ + [ 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 3.0], + [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [ 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0], + [ 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0], + [ 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0], + [ 0.0, 7.0, 8.0, 0.0, 0.0, 0.0, 0.0, 9.0], + [ 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 11.0, 12.0], + [ 0.0, 13.0, 14.0, 0.0, 0.0, 0.0, 15.0, 16.0] + ]> : tensor<8x8xf64> + + // + // Convert dense tensor to various sparse tensors. + // + %0 = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, #Dense> + %1 = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, #CSR> + %2 = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, #DCSR> + %3 = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, #CSC> + %4 = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, #DCSC> + + // + // Inspect storage scheme of Dense. + // + // CHECK: ( 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, + // CHECK-SAME: 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, + // CHECK-SAME: 0, 0, 0, 0, 6, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 9, + // CHECK-SAME: 0, 0, 10, 0, 0, 0, 11, 12, 0, 13, 14, 0, 0, 0, 15, 16 ) + // + %5 = sparse_tensor.values %0 : tensor<8x8xf64, #Dense> to memref + %6 = vector.transfer_read %5[%c0], %d0: memref, vector<64xf64> + vector.print %6 : vector<64xf64> + + // + // Inspect storage scheme of CSR. + // + // pointers(1) + // indices(1) + // values + // + // CHECK: ( 0, 3, 3, 4, 5, 6, 9, 12, 16 ) + // CHECK: ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7 ) + // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ) + // + %7 = sparse_tensor.pointers %1, %c1 : tensor<8x8xf64, #CSR> to memref + %8 = vector.transfer_read %7[%c0], %c0: memref, vector<9xindex> + vector.print %8 : vector<9xindex> + %9 = sparse_tensor.indices %1, %c1 : tensor<8x8xf64, #CSR> to memref + %10 = vector.transfer_read %9[%c0], %c0: memref, vector<16xindex> + vector.print %10 : vector<16xindex> + %11 = sparse_tensor.values %1 : tensor<8x8xf64, #CSR> to memref + %12 = vector.transfer_read %11[%c0], %d0: memref, vector<16xf64> + vector.print %12 : vector<16xf64> + + // + // Inspect storage scheme of DCSR. + // + // pointers(0) + // indices(0) + // pointers(1) + // indices(1) + // values + // + // CHECK: ( 0, 7 ) + // CHECK: ( 0, 2, 3, 4, 5, 6, 7 ) + // CHECK: ( 0, 3, 4, 5, 6, 9, 12, 16 ) + // CHECK: ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7 ) + // CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ) + // + %13 = sparse_tensor.pointers %2, %c0 : tensor<8x8xf64, #DCSR> to memref + %14 = vector.transfer_read %13[%c0], %c0: memref, vector<2xindex> + vector.print %14 : vector<2xindex> + %15 = sparse_tensor.indices %2, %c0 : tensor<8x8xf64, #DCSR> to memref + %16 = vector.transfer_read %15[%c0], %c0: memref, vector<7xindex> + vector.print %16 : vector<7xindex> + %17 = sparse_tensor.pointers %2, %c1 : tensor<8x8xf64, #DCSR> to memref + %18 = vector.transfer_read %17[%c0], %c0: memref, vector<8xindex> + vector.print %18 : vector<8xindex> + %19 = sparse_tensor.indices %2, %c1 : tensor<8x8xf64, #DCSR> to memref + %20 = vector.transfer_read %19[%c0], %c0: memref, vector<16xindex> + vector.print %20 : vector<16xindex> + %21 = sparse_tensor.values %2 : tensor<8x8xf64, #DCSR> to memref + %22 = vector.transfer_read %21[%c0], %d0: memref, vector<16xf64> + vector.print %22 : vector<16xf64> + + // + // Inspect storage scheme of CSC. + // + // pointers(1) + // indices(1) + // values + // + // CHECK: ( 0, 1, 3, 8, 9, 10, 10, 12, 16 ) + // CHECK: ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 0, 5, 6, 7 ) + // CHECK: ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 3, 9, 12, 16 ) + // + %23 = sparse_tensor.pointers %3, %c1 : tensor<8x8xf64, #CSC> to memref + %24 = vector.transfer_read %23[%c0], %c0: memref, vector<9xindex> + vector.print %24 : vector<9xindex> + %25 = sparse_tensor.indices %3, %c1 : tensor<8x8xf64, #CSC> to memref + %26 = vector.transfer_read %25[%c0], %c0: memref, vector<16xindex> + vector.print %26 : vector<16xindex> + %27 = sparse_tensor.values %3 : tensor<8x8xf64, #CSC> to memref + %28 = vector.transfer_read %27[%c0], %d0: memref, vector<16xf64> + vector.print %28 : vector<16xf64> + + // + // Inspect storage scheme of DCSC. + // + // pointers(0) + // indices(0) + // pointers(1) + // indices(1) + // values + // + // CHECK: ( 0, 7 ) + // CHECK: ( 0, 1, 2, 3, 4, 6, 7 ) + // CHECK: ( 0, 1, 3, 8, 9, 10, 12, 16 ) + // CHECK: ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 0, 5, 6, 7 ) + // CHECK: ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 3, 9, 12, 16 ) + // + %29 = sparse_tensor.pointers %4, %c0 : tensor<8x8xf64, #DCSC> to memref + %30 = vector.transfer_read %29[%c0], %c0: memref, vector<2xindex> + vector.print %30 : vector<2xindex> + %31 = sparse_tensor.indices %4, %c0 : tensor<8x8xf64, #DCSC> to memref + %32 = vector.transfer_read %31[%c0], %c0: memref, vector<7xindex> + vector.print %32 : vector<7xindex> + %33 = sparse_tensor.pointers %4, %c1 : tensor<8x8xf64, #DCSC> to memref + %34 = vector.transfer_read %33[%c0], %c0: memref, vector<8xindex> + vector.print %34 : vector<8xindex> + %35 = sparse_tensor.indices %4, %c1 : tensor<8x8xf64, #DCSC> to memref + %36 = vector.transfer_read %35[%c0], %c0: memref, vector<16xindex> + vector.print %36 : vector<16xindex> + %37 = sparse_tensor.values %4 : tensor<8x8xf64, #DCSC> to memref + %38 = vector.transfer_read %37[%c0], %d0: memref, vector<16xf64> + vector.print %38 : vector<16xf64> + + return + } +}