diff --git a/mlir/test/Integration/data/mttkrp_b.tns b/mlir/test/Integration/data/mttkrp_b.tns --- a/mlir/test/Integration/data/mttkrp_b.tns +++ b/mlir/test/Integration/data/mttkrp_b.tns @@ -5,44 +5,8 @@ # # see http://frostt.io/tensors/file-formats.html # -# This matrix represents the "B" input to the MTTKRP kernel: +# This tensor represents the "B" input to the MTTKRP kernel: # http://tensor-compiler.org/docs/data_analytics/index.html -# -# It can be generated with the following script, adapted from the above link: -# -#> import pytaco as pt -#> import numpy as np -#> from pytaco import compressed, dense -#> import random -#> -#> # Define formats for storing the sparse tensor and dense matrices. -#> csf = pt.format([compressed, compressed, compressed]) -#> rm = pt.format([dense, dense]) -# -#> B=pt.tensor((2,3,4),csf) -#> density = 0.25 -#> for i in range(2): -#> for j in range(3): -#> for k in range(4): -#> if random.random() > density: -#> B.insert((i,j,k), random.randint(0,100)) -#> -#> C = pt.from_array(np.arange(B.shape[1]*5).reshape(B.shape[1],5)) -#> D = pt.from_array(np.arange(B.shape[2]*5).reshape(B.shape[2],5)) -#> -#> # Declare the result to be a dense matrix. -#> A = pt.tensor([B.shape[0], 5], rm) -#> -#> # Declare index vars. -#> i, j, k, l = pt.get_index_vars(4) -#> -#> # Define the MTTKRP computation. -#> A[i, j] = B[i, k, l] * D[l, j] * C[k, j] -#> -#> # Perform the MTTKRP computation and write the result to file. -#> pt.write("A.tns", A) -#> pt.write("B.tns", B) -# 3 17 2 3 4 1 1 3 3