Index: llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.h =================================================================== --- llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.h +++ llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.h @@ -58,6 +58,11 @@ SBCS, ANDS, + // Conditional compares. Operands: left,right,falsecc,cc,flags + CCMP, + CCMN, + FCCMP, + // Floating point comparison FCMP, @@ -516,6 +521,8 @@ bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override; + + bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override; }; namespace AArch64 { Index: llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.cpp =================================================================== --- llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.cpp +++ llvm/trunk/lib/Target/AArch64/AArch64ISelLowering.cpp @@ -76,6 +76,9 @@ cl::desc("Allow AArch64 Local Dynamic TLS code generation"), cl::init(false)); +/// Value type used for condition codes. +static const MVT MVT_CC = MVT::i32; + AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, const AArch64Subtarget &STI) : TargetLowering(TM), Subtarget(&STI) { @@ -809,6 +812,9 @@ case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; + case AArch64ISD::CCMP: return "AArch64ISD::CCMP"; + case AArch64ISD::CCMN: return "AArch64ISD::CCMN"; + case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP"; case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; case AArch64ISD::FMIN: return "AArch64ISD::FMIN"; case AArch64ISD::FMAX: return "AArch64ISD::FMAX"; @@ -1167,14 +1173,224 @@ LHS = LHS.getOperand(0); } - return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS) + return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) .getValue(1); } +/// \defgroup AArch64CCMP CMP;CCMP matching +/// +/// These functions deal with the formation of CMP;CCMP;... sequences. +/// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of +/// a comparison. They set the NZCV flags to a predefined value if their +/// predicate is false. This allows to express arbitrary conjunctions, for +/// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B))))" +/// expressed as: +/// cmp A +/// ccmp B, inv(CB), CA +/// check for CB flags +/// +/// In general we can create code for arbitrary "... (and (and A B) C)" +/// sequences. We can also implement some "or" expressions, because "(or A B)" +/// is equivalent to "not (and (not A) (not B))" and we can implement some +/// negation operations: +/// We can negate the results of a single comparison by inverting the flags +/// used when the predicate fails and inverting the flags tested in the next +/// instruction; We can also negate the results of the whole previous +/// conditional compare sequence by inverting the flags tested in the next +/// instruction. However there is no way to negate the result of a partial +/// sequence. +/// +/// Therefore on encountering an "or" expression we can negate the subtree on +/// one side and have to be able to push the negate to the leafs of the subtree +/// on the other side (see also the comments in code). As complete example: +/// "or (or (setCA (cmp A)) (setCB (cmp B))) +/// (and (setCC (cmp C)) (setCD (cmp D)))" +/// is transformed to +/// "not (and (not (and (setCC (cmp C)) (setCC (cmp D)))) +/// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" +/// and implemented as: +/// cmp C +/// ccmp D, inv(CD), CC +/// ccmp A, CA, inv(CD) +/// ccmp B, CB, inv(CA) +/// check for CB flags +/// A counterexample is "or (and A B) (and C D)" which cannot be implemented +/// by conditional compare sequences. +/// @{ + +/// Create a conditional comparison; Use CCMP, CCMN or FCCMP as apropriate. +static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, + ISD::CondCode CC, SDValue CCOp, + SDValue Condition, unsigned NZCV, + SDLoc DL, SelectionDAG &DAG) { + unsigned Opcode = 0; + if (LHS.getValueType().isFloatingPoint()) + Opcode = AArch64ISD::FCCMP; + else if (RHS.getOpcode() == ISD::SUB) { + SDValue SubOp0 = RHS.getOperand(0); + if (const ConstantSDNode *SubOp0C = dyn_cast(SubOp0)) + if (SubOp0C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { + // See emitComparison() on why we can only do this for SETEQ and SETNE. + Opcode = AArch64ISD::CCMN; + RHS = RHS.getOperand(1); + } + } + if (Opcode == 0) + Opcode = AArch64ISD::CCMP; + + SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); + return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); +} + +/// Returns true if @p Val is a tree of AND/OR/SETCC operations. +/// CanPushNegate is set to true if we can push a negate operation through +/// the tree in a was that we are left with AND operations and negate operations +/// at the leafs only. i.e. "not (or (or x y) z)" can be changed to +/// "and (and (not x) (not y)) (not z)"; "not (or (and x y) z)" cannot be +/// brought into such a form. +static bool isConjunctionDisjunctionTree(const SDValue Val, bool &CanPushNegate, + unsigned Depth = 0) { + if (!Val.hasOneUse()) + return false; + unsigned Opcode = Val->getOpcode(); + if (Opcode == ISD::SETCC) { + CanPushNegate = true; + return true; + } + // Protect against stack overflow. + if (Depth > 15) + return false; + if (Opcode == ISD::AND || Opcode == ISD::OR) { + SDValue O0 = Val->getOperand(0); + SDValue O1 = Val->getOperand(1); + bool CanPushNegateL; + if (!isConjunctionDisjunctionTree(O0, CanPushNegateL, Depth+1)) + return false; + bool CanPushNegateR; + if (!isConjunctionDisjunctionTree(O1, CanPushNegateR, Depth+1)) + return false; + // We cannot push a negate through an AND operation (it would become an OR), + // we can however change a (not (or x y)) to (and (not x) (not y)) if we can + // push the negate through the x/y subtrees. + CanPushNegate = (Opcode == ISD::OR) && CanPushNegateL && CanPushNegateR; + return true; + } + return false; +} + +/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain +/// of CCMP/CFCMP ops. See @ref AArch64CCMP. +/// Tries to transform the given i1 producing node @p Val to a series compare +/// and conditional compare operations. @returns an NZCV flags producing node +/// and sets @p OutCC to the flags that should be tested or returns SDValue() if +/// transformation was not possible. +/// On recursive invocations @p PushNegate may be set to true to have negation +/// effects pushed to the tree leafs; @p Predicate is an NZCV flag predicate +/// for the comparisons in the current subtree; @p Depth limits the search +/// depth to avoid stack overflow. +static SDValue emitConjunctionDisjunctionTree(SelectionDAG &DAG, SDValue Val, + AArch64CC::CondCode &OutCC, bool PushNegate = false, + SDValue CCOp = SDValue(), AArch64CC::CondCode Predicate = AArch64CC::AL, + unsigned Depth = 0) { + // We're at a tree leaf, produce a conditional comparison operation. + unsigned Opcode = Val->getOpcode(); + if (Opcode == ISD::SETCC) { + SDValue LHS = Val->getOperand(0); + SDValue RHS = Val->getOperand(1); + ISD::CondCode CC = cast(Val->getOperand(2))->get(); + bool isInteger = LHS.getValueType().isInteger(); + if (PushNegate) + CC = getSetCCInverse(CC, isInteger); + SDLoc DL(Val); + // Determine OutCC and handle FP special case. + if (isInteger) { + OutCC = changeIntCCToAArch64CC(CC); + } else { + assert(LHS.getValueType().isFloatingPoint()); + AArch64CC::CondCode ExtraCC; + changeFPCCToAArch64CC(CC, OutCC, ExtraCC); + // Surpisingly some floating point conditions can't be tested with a + // single condition code. Construct an additional comparison in this case. + // See comment below on how we deal with OR conditions. + if (ExtraCC != AArch64CC::AL) { + SDValue ExtraCmp; + if (!CCOp.getNode()) + ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); + else { + SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC); + // Note that we want the inverse of ExtraCC, so NZCV is not inversed. + unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC); + ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, + NZCV, DL, DAG); + } + CCOp = ExtraCmp; + Predicate = AArch64CC::getInvertedCondCode(ExtraCC); + OutCC = AArch64CC::getInvertedCondCode(OutCC); + } + } + + // Produce a normal comparison if we are first in the chain + if (!CCOp.getNode()) + return emitComparison(LHS, RHS, CC, DL, DAG); + // Otherwise produce a ccmp. + SDValue ConditionOp = DAG.getConstant(Predicate, DL, MVT_CC); + AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); + unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); + return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL, + DAG); + } else if (Opcode != ISD::AND && Opcode != ISD::OR) + return SDValue(); + + assert((Opcode == ISD::OR || !PushNegate) + && "Can only push negate through OR operation"); + + // Check if both sides can be transformed. + SDValue LHS = Val->getOperand(0); + SDValue RHS = Val->getOperand(1); + bool CanPushNegateL; + if (!isConjunctionDisjunctionTree(LHS, CanPushNegateL, Depth+1)) + return SDValue(); + bool CanPushNegateR; + if (!isConjunctionDisjunctionTree(RHS, CanPushNegateR, Depth+1)) + return SDValue(); + + // Do we need to negate our operands? + bool NegateOperands = Opcode == ISD::OR; + // We can negate the results of all previous operations by inverting the + // predicate flags giving us a free negation for one side. For the other side + // we need to be able to push the negation to the leafs of the tree. + if (NegateOperands) { + if (!CanPushNegateL && !CanPushNegateR) + return SDValue(); + // Order the side where we can push the negate through to LHS. + if (!CanPushNegateL && CanPushNegateR) { + std::swap(LHS, RHS); + CanPushNegateL = true; + } + } + + // Emit RHS. If we want to negate the tree we only need to push a negate + // through if we are already in a PushNegate case, otherwise we can negate + // the "flags to test" afterwards. + AArch64CC::CondCode RHSCC; + SDValue CmpR = emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, PushNegate, + CCOp, Predicate, Depth+1); + if (NegateOperands && !PushNegate) + RHSCC = AArch64CC::getInvertedCondCode(RHSCC); + // Emit LHS. We must push the negate through if we need to negate it. + SDValue CmpL = emitConjunctionDisjunctionTree(DAG, LHS, OutCC, NegateOperands, + CmpR, RHSCC, Depth+1); + // If we transformed an OR to and AND then we have to negate the result + // (or absorb a PushNegate resulting in a double negation). + if (Opcode == ISD::OR && !PushNegate) + OutCC = AArch64CC::getInvertedCondCode(OutCC); + return CmpL; +} + +/// @} + static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) { - SDValue Cmp; - AArch64CC::CondCode AArch64CC; if (ConstantSDNode *RHSC = dyn_cast(RHS.getNode())) { EVT VT = RHS.getValueType(); uint64_t C = RHSC->getZExtValue(); @@ -1229,47 +1445,56 @@ } } } - // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. - // For the i8 operand, the largest immediate is 255, so this can be easily - // encoded in the compare instruction. For the i16 operand, however, the - // largest immediate cannot be encoded in the compare. - // Therefore, use a sign extending load and cmn to avoid materializing the -1 - // constant. For example, - // movz w1, #65535 - // ldrh w0, [x0, #0] - // cmp w0, w1 - // > - // ldrsh w0, [x0, #0] - // cmn w0, #1 - // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) - // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure - // both the LHS and RHS are truely zero extended and to make sure the - // transformation is profitable. + SDValue Cmp; + AArch64CC::CondCode AArch64CC; if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa(RHS)) { - if ((cast(RHS)->getZExtValue() >> 16 == 0) && - isa(LHS)) { - if (cast(LHS)->getExtensionType() == ISD::ZEXTLOAD && - cast(LHS)->getMemoryVT() == MVT::i16 && - LHS.getNode()->hasNUsesOfValue(1, 0)) { - int16_t ValueofRHS = cast(RHS)->getZExtValue(); - if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { - SDValue SExt = - DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, - DAG.getValueType(MVT::i16)); - Cmp = emitComparison(SExt, - DAG.getConstant(ValueofRHS, dl, - RHS.getValueType()), - CC, dl, DAG); - AArch64CC = changeIntCCToAArch64CC(CC); - AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32); - return Cmp; - } + const ConstantSDNode *RHSC = cast(RHS); + + // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. + // For the i8 operand, the largest immediate is 255, so this can be easily + // encoded in the compare instruction. For the i16 operand, however, the + // largest immediate cannot be encoded in the compare. + // Therefore, use a sign extending load and cmn to avoid materializing the + // -1 constant. For example, + // movz w1, #65535 + // ldrh w0, [x0, #0] + // cmp w0, w1 + // > + // ldrsh w0, [x0, #0] + // cmn w0, #1 + // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) + // if and only if (sext LHS) == (sext RHS). The checks are in place to + // ensure both the LHS and RHS are truely zero extended and to make sure the + // transformation is profitable. + if ((RHSC->getZExtValue() >> 16 == 0) && isa(LHS) && + cast(LHS)->getExtensionType() == ISD::ZEXTLOAD && + cast(LHS)->getMemoryVT() == MVT::i16 && + LHS.getNode()->hasNUsesOfValue(1, 0)) { + int16_t ValueofRHS = cast(RHS)->getZExtValue(); + if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { + SDValue SExt = + DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, + DAG.getValueType(MVT::i16)); + Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, + RHS.getValueType()), + CC, dl, DAG); + AArch64CC = changeIntCCToAArch64CC(CC); + } + } + + if (!Cmp && (RHSC->isNullValue() || RHSC->isOne())) { + if ((Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC))) { + if ((CC == ISD::SETNE) ^ RHSC->isNullValue()) + AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); } } } - Cmp = emitComparison(LHS, RHS, CC, dl, DAG); - AArch64CC = changeIntCCToAArch64CC(CC); - AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32); + + if (!Cmp) { + Cmp = emitComparison(LHS, RHS, CC, dl, DAG); + AArch64CC = changeIntCCToAArch64CC(CC); + } + AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); return Cmp; } @@ -9294,3 +9519,8 @@ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { return Ty->isArrayTy(); } + +bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, + EVT) const { + return false; +} Index: llvm/trunk/lib/Target/AArch64/AArch64InstrFormats.td =================================================================== --- llvm/trunk/lib/Target/AArch64/AArch64InstrFormats.td +++ llvm/trunk/lib/Target/AArch64/AArch64InstrFormats.td @@ -525,6 +525,13 @@ let ParserMatchClass = Imm0_31Operand; } +// True if the 32-bit immediate is in the range [0,31] +def imm32_0_31 : Operand, ImmLeaf { + let ParserMatchClass = Imm0_31Operand; +} + // imm0_15 predicate - True if the immediate is in the range [0,15] def imm0_15 : Operand, ImmLeaf, ImmLeaf; +}]> { + let ParserMatchClass = Imm0_15Operand; +} // An arithmetic shifter operand: // {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr @@ -2108,9 +2117,12 @@ //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in -class BaseCondSetFlagsImm - : I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond), - asm, "\t$Rn, $imm, $nzcv, $cond", "", []>, +class BaseCondComparisonImm + : I<(outs), (ins regtype:$Rn, immtype:$imm, imm32_0_15:$nzcv, ccode:$cond), + mnemonic, "\t$Rn, $imm, $nzcv, $cond", "", + [(set NZCV, (OpNode regtype:$Rn, immtype:$imm, (i32 imm:$nzcv), + (i32 imm:$cond), NZCV))]>, Sched<[WriteI, ReadI]> { let Uses = [NZCV]; let Defs = [NZCV]; @@ -2130,19 +2142,13 @@ let Inst{3-0} = nzcv; } -multiclass CondSetFlagsImm { - def Wi : BaseCondSetFlagsImm { - let Inst{31} = 0; - } - def Xi : BaseCondSetFlagsImm { - let Inst{31} = 1; - } -} - let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in -class BaseCondSetFlagsReg - : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), - asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, +class BaseCondComparisonReg + : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond), + mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "", + [(set NZCV, (OpNode regtype:$Rn, regtype:$Rm, (i32 imm:$nzcv), + (i32 imm:$cond), NZCV))]>, Sched<[WriteI, ReadI, ReadI]> { let Uses = [NZCV]; let Defs = [NZCV]; @@ -2162,11 +2168,19 @@ let Inst{3-0} = nzcv; } -multiclass CondSetFlagsReg { - def Wr : BaseCondSetFlagsReg { +multiclass CondComparison { + // immediate operand variants + def Wi : BaseCondComparisonImm { let Inst{31} = 0; } - def Xr : BaseCondSetFlagsReg { + def Xi : BaseCondComparisonImm { + let Inst{31} = 1; + } + // register operand variants + def Wr : BaseCondComparisonReg { + let Inst{31} = 0; + } + def Xr : BaseCondComparisonReg { let Inst{31} = 1; } } @@ -3974,11 +3988,14 @@ //--- let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in -class BaseFPCondComparison - : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond), - asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>, +class BaseFPCondComparison pat> + : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond), + mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "", pat>, Sched<[WriteFCmp]> { + let Uses = [NZCV]; + let Defs = [NZCV]; + bits<5> Rn; bits<5> Rm; bits<4> nzcv; @@ -3994,16 +4011,18 @@ let Inst{3-0} = nzcv; } -multiclass FPCondComparison { - let Defs = [NZCV], Uses = [NZCV] in { - def Srr : BaseFPCondComparison { +multiclass FPCondComparison { + def Srr : BaseFPCondComparison { let Inst{22} = 0; } - - def Drr : BaseFPCondComparison { + def Drr : BaseFPCondComparison { let Inst{22} = 1; } - } // Defs = [NZCV], Uses = [NZCV] } //--- Index: llvm/trunk/lib/Target/AArch64/AArch64InstrInfo.td =================================================================== --- llvm/trunk/lib/Target/AArch64/AArch64InstrInfo.td +++ llvm/trunk/lib/Target/AArch64/AArch64InstrInfo.td @@ -66,6 +66,20 @@ SDTCisSameAs<0, 2>, SDTCisInt<3>, SDTCisVT<4, i32>]>; +def SDT_AArch64CCMP : SDTypeProfile<1, 5, + [SDTCisVT<0, i32>, + SDTCisInt<1>, + SDTCisSameAs<1, 2>, + SDTCisInt<3>, + SDTCisInt<4>, + SDTCisVT<5, i32>]>; +def SDT_AArch64FCCMP : SDTypeProfile<1, 5, + [SDTCisVT<0, i32>, + SDTCisFP<1>, + SDTCisSameAs<1, 2>, + SDTCisInt<3>, + SDTCisInt<4>, + SDTCisVT<5, i32>]>; def SDT_AArch64FCmp : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; @@ -160,6 +174,10 @@ def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>; def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>; +def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>; +def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>; +def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>; + def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>; def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>; @@ -1020,13 +1038,10 @@ def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>; //===----------------------------------------------------------------------===// -// Conditionally set flags instructions. +// Conditional comparison instructions. //===----------------------------------------------------------------------===// -defm CCMN : CondSetFlagsImm<0, "ccmn">; -defm CCMP : CondSetFlagsImm<1, "ccmp">; - -defm CCMN : CondSetFlagsReg<0, "ccmn">; -defm CCMP : CondSetFlagsReg<1, "ccmp">; +defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>; +defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>; //===----------------------------------------------------------------------===// // Conditional select instructions. @@ -2556,7 +2571,7 @@ //===----------------------------------------------------------------------===// defm FCCMPE : FPCondComparison<1, "fccmpe">; -defm FCCMP : FPCondComparison<0, "fccmp">; +defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>; //===----------------------------------------------------------------------===// // Floating point conditional select instruction. Index: llvm/trunk/test/CodeGen/AArch64/arm64-ccmp.ll =================================================================== --- llvm/trunk/test/CodeGen/AArch64/arm64-ccmp.ll +++ llvm/trunk/test/CodeGen/AArch64/arm64-ccmp.ll @@ -287,3 +287,99 @@ %code1.i.i.phi.trans.insert = getelementptr inbounds %str1, %str1* %0, i64 0, i32 0, i32 0, i64 16 br label %sw.bb.i.i } + +; CHECK-LABEL: select_and +define i64 @select_and(i32 %w0, i32 %w1, i64 %x2, i64 %x3) { +; CHECK: cmp w1, #5 +; CHECK-NEXT: ccmp w0, w1, #0, ne +; CHECK-NEXT: csel x0, x2, x3, lt +; CHECK-NEXT: ret + %1 = icmp slt i32 %w0, %w1 + %2 = icmp ne i32 5, %w1 + %3 = and i1 %1, %2 + %sel = select i1 %3, i64 %x2, i64 %x3 + ret i64 %sel +} + +; CHECK-LABEL: select_or +define i64 @select_or(i32 %w0, i32 %w1, i64 %x2, i64 %x3) { +; CHECK: cmp w1, #5 +; CHECK-NEXT: ccmp w0, w1, #8, eq +; CHECK-NEXT: csel x0, x2, x3, lt +; CHECK-NEXT: ret + %1 = icmp slt i32 %w0, %w1 + %2 = icmp ne i32 5, %w1 + %3 = or i1 %1, %2 + %sel = select i1 %3, i64 %x2, i64 %x3 + ret i64 %sel +} + +; CHECK-LABEL: select_complicated +define i16 @select_complicated(double %v1, double %v2, i16 %a, i16 %b) { +; CHECK: ldr [[REG:d[0-9]+]], +; CHECK: fcmp d0, d2 +; CHECK-NEXT: fmov d2, #13.00000000 +; CHECK-NEXT: fccmp d1, d2, #4, ne +; CHECK-NEXT: fccmp d0, d1, #1, ne +; CHECK-NEXT: fccmp d0, d1, #4, vc +; CEHCK-NEXT: csel w0, w0, w1, eq + %1 = fcmp one double %v1, %v2 + %2 = fcmp oeq double %v2, 13.0 + %3 = fcmp oeq double %v1, 42.0 + %or0 = or i1 %2, %3 + %or1 = or i1 %1, %or0 + %sel = select i1 %or1, i16 %a, i16 %b + ret i16 %sel +} + +; CHECK-LABEL: gccbug +define i64 @gccbug(i64 %x0, i64 %x1) { +; CHECK: cmp x1, #0 +; CHECK-NEXT: ccmp x0, #2, #0, eq +; CHECK-NEXT: ccmp x0, #4, #4, ne +; CHECK-NEXT: orr w[[REGNUM:[0-9]+]], wzr, #0x1 +; CHECK-NEXT: cinc x0, x[[REGNUM]], eq +; CHECK-NEXT: ret + %cmp0 = icmp eq i64 %x1, 0 + %cmp1 = icmp eq i64 %x0, 2 + %cmp2 = icmp eq i64 %x0, 4 + + %or = or i1 %cmp2, %cmp1 + %and = and i1 %or, %cmp0 + + %sel = select i1 %and, i64 2, i64 1 + ret i64 %sel +} + +; CHECK-LABEL: select_ororand +define i32 @select_ororand(i32 %w0, i32 %w1, i32 %w2, i32 %w3) { +; CHECK: cmp w3, #4 +; CHECK-NEXT: ccmp w2, #2, #0, gt +; CHECK-NEXT: ccmp w1, #13, #2, ge +; CHECK-NEXT: ccmp w0, #0, #4, ls +; CHECK-NEXT: csel w0, w3, wzr, eq +; CHECK-NEXT: ret + %c0 = icmp eq i32 %w0, 0 + %c1 = icmp ugt i32 %w1, 13 + %c2 = icmp slt i32 %w2, 2 + %c4 = icmp sgt i32 %w3, 4 + %or = or i1 %c0, %c1 + %and = and i1 %c2, %c4 + %or1 = or i1 %or, %and + %sel = select i1 %or1, i32 %w3, i32 0 + ret i32 %sel +} + +; CHECK-LABEL: select_noccmp +define i64 @select_noccmp(i64 %v1, i64 %v2, i64 %v3, i64 %r) { +; CHECK-NOT: CCMP + %c0 = icmp slt i64 %v1, 0 + %c1 = icmp sgt i64 %v1, 13 + %c2 = icmp slt i64 %v3, 2 + %c4 = icmp sgt i64 %v3, 4 + %and0 = and i1 %c0, %c1 + %and1 = and i1 %c2, %c4 + %or = or i1 %and0, %and1 + %sel = select i1 %or, i64 0, i64 %r + ret i64 %sel +}