diff --git a/mlir/lib/Dialect/Affine/Transforms/AffineScalarReplacement.cpp b/mlir/lib/Dialect/Affine/Transforms/AffineScalarReplacement.cpp --- a/mlir/lib/Dialect/Affine/Transforms/AffineScalarReplacement.cpp +++ b/mlir/lib/Dialect/Affine/Transforms/AffineScalarReplacement.cpp @@ -33,27 +33,17 @@ namespace { // The store to load forwarding and load CSE rely on three conditions: // -// 1) store/load and load need to have mathematically equivalent affine access -// functions (checked after full composition of load/store operands); this -// implies that they access the same single memref element for all iterations of -// the common surrounding loop, +// 1) store/load providing a replacement value and load being replaced need to +// have mathematically equivalent affine access functions (checked after full +// composition of load/store operands); this implies that they access the same +// single memref element for all iterations of the common surrounding loop, // // 2) the store/load op should dominate the load op, // -// 3) among all op's that satisfy both (1) and (2), for store to load -// forwarding, the one that postdominates all store op's that have a dependence -// into the load, is provably the last writer to the particular memref location -// being loaded at the load op, and its store value can be forwarded to the -// load; for load CSE, any op that postdominates all store op's that have a -// dependence into the load can be forwarded and the first one found is chosen. -// Note that the only dependences that are to be considered are those that are -// satisfied at the block* of the innermost common surrounding loop of the -// being considered. -// -// (* A dependence being satisfied at a block: a dependence that is satisfied by -// virtue of the destination operation appearing textually / lexically after -// the source operation within the body of a 'affine.for' operation; thus, a -// dependence is always either satisfied by a loop or by a block). +// 3) no operation that may write to memory read by the load being replaced can +// occur after executing the instruction (load or store) providing the +// replacement value and before the load being replaced (thus potentially +// allowing overwriting the memory read by the load). // // The above conditions are simple to check, sufficient, and powerful for most // cases in practice - they are sufficient, but not necessary --- since they @@ -70,17 +60,14 @@ : public AffineScalarReplacementBase { void runOnFunction() override; - LogicalResult forwardStoreToLoad(AffineReadOpInterface loadOp); - void loadCSE(AffineReadOpInterface loadOp); - - // A list of memref's that are potentially dead / could be eliminated. - SmallPtrSet memrefsToErase; - // Load op's whose results were replaced by those forwarded from stores - // dominating stores or loads.. - SmallVector loadOpsToErase; + LogicalResult forwardStoreToLoad(AffineReadOpInterface loadOp, + SmallVectorImpl &loadOpsToErase, + SmallPtrSetImpl &memrefsToErase, + DominanceInfo &domInfo); - DominanceInfo *domInfo = nullptr; - PostDominanceInfo *postDomInfo = nullptr; + void loadCSE(AffineReadOpInterface loadOp, + SmallVectorImpl &loadOpsToErase, + DominanceInfo &domInfo); }; } // end anonymous namespace @@ -92,61 +79,206 @@ return std::make_unique(); } -// Check if the store may be reaching the load. -static bool storeMayReachLoad(Operation *storeOp, Operation *loadOp, - unsigned minSurroundingLoops) { - MemRefAccess srcAccess(storeOp); - MemRefAccess destAccess(loadOp); - FlatAffineConstraints dependenceConstraints; - unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp); - unsigned d; - // Dependences at loop depth <= minSurroundingLoops do NOT matter. - for (d = nsLoops + 1; d > minSurroundingLoops; d--) { - DependenceResult result = checkMemrefAccessDependence( - srcAccess, destAccess, d, &dependenceConstraints, - /*dependenceComponents=*/nullptr); - if (hasDependence(result)) - break; - } - if (d <= minSurroundingLoops) - return false; +/// Ensure that all operations that could be executed after `start` +/// (noninclusive) +// and prior to `memOp` (e.g. on a control flow/op path between the operations) +/// do not have the potential memory effect `EffectType` on `memOp`. `memOp` +/// is an operation that reads or writes to a memref. For example, if +/// `EffectType` is MemoryEffects::Write, this method will checks if is no +/// write to the memory between `start` and `memOp` that would change the read +/// within `memOp`. +template +bool hasNoInterveningEffect(Operation *start, T memOp) { + + Value memref = memOp.getMemRef(); + bool isOriginalAllocation = memref.getDefiningOp() || + memref.getDefiningOp(); + + // A boolean representing whether an intervening operation could have impacted + // memOp. + bool hasSideEffect = false; + + // Check whether the effect on memOp can be caused by a given operation op. + std::function checkOperation = [&](Operation *op) { + // If the effect has alreay been found, early exit, + if (hasSideEffect) + return; + + if (auto memEffect = dyn_cast(op)) { + SmallVector effects; + memEffect.getEffects(effects); + + bool opMayHaveEffect = false; + for (auto effect : effects) { + // If op causes EffectType on a potentially aliasing location for + // memOp, mark as having the effect. + if (isa(effect.getEffect())) { + if (isOriginalAllocation && effect.getValue() && + (effect.getValue().getDefiningOp() || + effect.getValue().getDefiningOp())) { + if (effect.getValue() != memref) + continue; + } + opMayHaveEffect = true; + break; + } + } - return true; + if (!opMayHaveEffect) + return; + + // If the side effect comes from an affine read or write, try to + // prove the side effecting `op` cannot reach `memOp`. + if (isa(op)) { + MemRefAccess srcAccess(op); + MemRefAccess destAccess(memOp); + // Dependence analysis is only correct if both ops operate on the same + // memref. + if (srcAccess.memref == destAccess.memref) { + FlatAffineConstraints dependenceConstraints; + + // Number of loops containing the start op and the ending operation. + unsigned minSurroundingLoops = + getNumCommonSurroundingLoops(*start, *memOp); + + // Number of loops containing the operation `op` which has the + // potential memory side effect and can occur on a path between + // `start` and `memOp`. + unsigned nsLoops = getNumCommonSurroundingLoops(*op, *memOp); + + // For ease, let's consider the case that `op` is a store and we're + // looking for other potential stores (e.g `op`) that overwrite memory + // after `start`, and before being read in `memOp`. In this case, we + // only need to consider other potential stores with depth > + // minSurrounding loops since `start` would overwrite any store with a + // smaller number of surrounding loops before. + unsigned d; + for (d = nsLoops + 1; d > minSurroundingLoops; d--) { + DependenceResult result = checkMemrefAccessDependence( + srcAccess, destAccess, d, &dependenceConstraints, + /*dependenceComponents=*/nullptr); + if (hasDependence(result)) { + hasSideEffect = true; + return; + } + } + + // No side effect was seen, simply return. + return; + } + } + hasSideEffect = true; + return; + } + + if (op->hasTrait()) { + // Recurse into the regions for this op and check whether the internal + // operations may have the side effect `EffectType` on memOp. + for (Region ®ion : op->getRegions()) + for (Block &block : region) + for (Operation &op : block) + checkOperation(&op); + return; + } + + // Otherwise, conservatively assume generic operations have the effect + // on the operation + hasSideEffect = true; + return; + }; + + // Check all paths from ancestor op `parent` to the operation `to` for the + // effect. It is known that `to` must be contained within `parent`. + auto until = [&](Operation *parent, Operation *to) { + // TODO check only the paths from `parent` to `to`. + // Currently we fallback and check the entire parent op, rather than + // just the paths from the parent path, stopping after reaching `to`. + // This is conservatively correct, but could be made more aggressive. + assert(parent->isAncestor(to)); + checkOperation(parent); + }; + + // Check for all paths from operation `from` to operation `untilOp` for the + // given memory effect. + std::function recur = + [&](Operation *from, Operation *untilOp) { + assert( + from->getParentRegion()->isAncestor(untilOp->getParentRegion()) && + "Checking for side effect between two operations without a common " + "ancestor"); + + // If the operations are in different regions, recursively consider all + // path from `from` to the parent of `to` and all paths from the parent + // of `to` to `to`. + if (from->getParentRegion() != untilOp->getParentRegion()) { + recur(from, untilOp->getParentOp()); + until(untilOp->getParentOp(), untilOp); + return; + } + + // Now, assuming that `from` and `to` exist in the same region, perform + // a CFG traversal to check all the relevant operations. + + // Additional blocks to consider. + SmallVector todoBlocks; + { + // First consider the parent block of `from` an check all operations + // after `from`. + for (auto iter = ++from->getIterator(), end = from->getBlock()->end(); + iter != end && &*iter != untilOp; ++iter) { + checkOperation(&*iter); + } + + // If the parent of `from` doesn't contain `to`, add the successors + // to the list of blocks to check. + if (untilOp->getBlock() != from->getBlock()) + for (Block *succ : from->getBlock()->getSuccessors()) + todoBlocks.push_back(succ); + } + + SmallPtrSet done; + // Traverse the CFG until hitting `to`. + while (todoBlocks.size()) { + Block *blk = todoBlocks.pop_back_val(); + if (done.count(blk)) + continue; + done.insert(blk); + for (auto &op : *blk) { + if (&op == untilOp) + break; + checkOperation(&op); + if (&op == blk->getTerminator()) + for (Block *succ : blk->getSuccessors()) + todoBlocks.push_back(succ); + } + } + }; + recur(start, memOp); + return !hasSideEffect; } -// This is a straightforward implementation not optimized for speed. Optimize -// if needed. -LogicalResult -AffineScalarReplacement::forwardStoreToLoad(AffineReadOpInterface loadOp) { - // First pass over the use list to get the minimum number of surrounding - // loops common between the load op and the store op, with min taken across - // all store ops. - SmallVector storeOps; - unsigned minSurroundingLoops = getNestingDepth(loadOp); +// Attempt to eliminate loadOp by replacing it with a value stored into memory +// which the load is guaranteed to retrieve. This check involves three +// components: 1) The store and load must be on the same location 2) The store +// must dominate (and therefore must always occur prior to) the load 3) No other +// operations will overwrite the memory loaded between the given load +// and store +// If such a value exists, the replaced `loadOp` will be added to +// `loadOpsToErase` and its memref will be added to `memrefsToErase`. +LogicalResult AffineScalarReplacement::forwardStoreToLoad( + AffineReadOpInterface loadOp, SmallVectorImpl &loadOpsToErase, + SmallPtrSetImpl &memrefsToErase, DominanceInfo &domInfo) { + + // The store op candidate for forwarding that satisfies all conditions + // to replace the load, if any. + Operation *lastWriteStoreOp = nullptr; + for (auto *user : loadOp.getMemRef().getUsers()) { auto storeOp = dyn_cast(user); if (!storeOp) continue; - unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *storeOp); - minSurroundingLoops = std::min(nsLoops, minSurroundingLoops); - storeOps.push_back(storeOp); - } - - // The list of store op candidates for forwarding that satisfy conditions - // (1) and (2) above - they will be filtered later when checking (3). - SmallVector fwdingCandidates; - - // Store ops that have a dependence into the load (even if they aren't - // forwarding candidates). Each forwarding candidate will be checked for a - // post-dominance on these. 'fwdingCandidates' are a subset of depSrcStores. - SmallVector depSrcStores; - - for (auto *storeOp : storeOps) { - if (!storeMayReachLoad(storeOp, loadOp, minSurroundingLoops)) - continue; - - // Stores that *may* be reaching the load. - depSrcStores.push_back(storeOp); + MemRefAccess srcAccess(storeOp); + MemRefAccess destAccess(loadOp); // 1. Check if the store and the load have mathematically equivalent // affine access functions; this implies that they statically refer to the @@ -156,48 +288,43 @@ // store %A[%M] // load %A[%N] // Use the AffineValueMap difference based memref access equality checking. - MemRefAccess srcAccess(storeOp); - MemRefAccess destAccess(loadOp); if (srcAccess != destAccess) continue; // 2. The store has to dominate the load op to be candidate. - if (!domInfo->dominates(storeOp, loadOp)) + if (!domInfo.dominates(storeOp, loadOp)) + continue; + + // 3. Ensure there is no intermediate operation which could replace the + // value in memory. + if (!hasNoInterveningEffect(storeOp, loadOp)) continue; // We now have a candidate for forwarding. - fwdingCandidates.push_back(storeOp); + assert(lastWriteStoreOp == nullptr && + "multiple simulataneous replacement stores"); + lastWriteStoreOp = storeOp; } - // 3. Of all the store op's that meet the above criteria, the store that - // postdominates all 'depSrcStores' (if one exists) is the unique store - // providing the value to the load, i.e., provably the last writer to that - // memref loc. - // Note: this can be implemented in a cleaner way with postdominator tree - // traversals. Consider this for the future if needed. - Operation *lastWriteStoreOp = nullptr; - for (auto *storeOp : fwdingCandidates) { - if (llvm::all_of(depSrcStores, [&](Operation *depStore) { - return postDomInfo->postDominates(storeOp, depStore); - })) { - lastWriteStoreOp = storeOp; - break; - } - } if (!lastWriteStoreOp) return failure(); // Perform the actual store to load forwarding. Value storeVal = cast(lastWriteStoreOp).getValueToStore(); + // Check if 2 values have the same shape. This is needed for affine vector // loads and stores. if (storeVal.getType() != loadOp.getValue().getType()) return failure(); + loadOp.getValue().replaceAllUsesWith(storeVal); + // Record the memref for a later sweep to optimize away. memrefsToErase.insert(loadOp.getMemRef()); + // Record this to erase later. + loadOpsToErase.push_back(loadOp); return success(); } @@ -207,109 +334,84 @@ // loadA will be be replaced with loadB if: // 1) loadA and loadB have mathematically equivalent affine access functions. // 2) loadB dominates loadA. -// 3) loadB postdominates all the store op's that have a dependence into loadA. -void AffineScalarReplacement::loadCSE(AffineReadOpInterface loadOp) { - // The list of load op candidates for forwarding that satisfy conditions - // (1) and (2) above - they will be filtered later when checking (3). - SmallVector fwdingCandidates; - SmallVector storeOps; - unsigned minSurroundingLoops = getNestingDepth(loadOp); - MemRefAccess memRefAccess(loadOp); - // First pass over the use list to get 1) the minimum number of surrounding - // loops common between the load op and an load op candidate, with min taken - // across all load op candidates; 2) load op candidates; 3) store ops. - // We take min across all load op candidates instead of all load ops to make - // sure later dependence check is performed at loop depths that do matter. - for (auto *user : loadOp.getMemRef().getUsers()) { - if (auto storeOp = dyn_cast(user)) { - storeOps.push_back(storeOp); - } else if (auto aLoadOp = dyn_cast(user)) { - MemRefAccess otherMemRefAccess(aLoadOp); - // No need to consider Load ops that have been replaced in previous store - // to load forwarding or loadCSE. If loadA or storeA can be forwarded to - // loadB, then loadA or storeA can be forwarded to loadC iff loadB can be - // forwarded to loadC. - // If loadB is visited before loadC and replace with loadA, we do not put - // loadB in candidates list, only loadA. If loadC is visited before loadB, - // loadC may be replaced with loadB, which will be replaced with loadA - // later. - if (aLoadOp != loadOp && !llvm::is_contained(loadOpsToErase, aLoadOp) && - memRefAccess == otherMemRefAccess && - domInfo->dominates(aLoadOp, loadOp)) { - fwdingCandidates.push_back(aLoadOp); - unsigned nsLoops = getNumCommonSurroundingLoops(*loadOp, *aLoadOp); - minSurroundingLoops = std::min(nsLoops, minSurroundingLoops); - } +// 3) There is no write between loadA and loadB +void AffineScalarReplacement::loadCSE( + AffineReadOpInterface loadA, SmallVectorImpl &loadOpsToErase, + DominanceInfo &domInfo) { + SmallVector loadCandidates; + for (auto *user : loadA.getMemRef().getUsers()) { + auto loadB = dyn_cast(user); + if (!loadB || loadB == loadA) + continue; + + MemRefAccess srcAccess(loadB); + MemRefAccess destAccess(loadA); + + // 1. The accesses have to be to the same location + if (srcAccess != destAccess) { + continue; } - } - // No forwarding candidate. - if (fwdingCandidates.empty()) - return; + // 2. The store has to dominate the load op to be candidate. + if (!domInfo.dominates(loadB, loadA)) + continue; - // Store ops that have a dependence into the load. - SmallVector depSrcStores; + if (!hasNoInterveningEffect(loadB.getOperation(), + loadA)) + continue; - for (auto *storeOp : storeOps) { - if (!storeMayReachLoad(storeOp, loadOp, minSurroundingLoops)) + // Check if two values have the same shape. This is needed for affine vector + // loads. + if (loadB.getValue().getType() != loadA.getValue().getType()) continue; - // Stores that *may* be reaching the load. - depSrcStores.push_back(storeOp); + loadCandidates.push_back(loadB); } - // 3. Of all the load op's that meet the above criteria, return the first load - // found that postdominates all 'depSrcStores' and has the same shape as the - // load to be replaced (if one exists). The shape check is needed for affine - // vector loads. - Operation *firstLoadOp = nullptr; - Value oldVal = loadOp.getValue(); - for (auto *loadOp : fwdingCandidates) { - if (llvm::all_of(depSrcStores, - [&](Operation *depStore) { - return postDomInfo->postDominates(loadOp, depStore); - }) && - cast(loadOp).getValue().getType() == - oldVal.getType()) { - firstLoadOp = loadOp; + // Of the legal load candidates, use the one that dominates all others + // to minimize the subsequent need to loadCSE + Value loadB; + for (AffineReadOpInterface option : loadCandidates) { + if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) { + return depStore == option || + domInfo.dominates(option.getOperation(), + depStore.getOperation()); + })) { + loadB = option.getValue(); break; } } - if (!firstLoadOp) - return; - // Perform the actual load to load forwarding. - Value loadVal = cast(firstLoadOp).getValue(); - loadOp.getValue().replaceAllUsesWith(loadVal); - // Record this to erase later. - loadOpsToErase.push_back(loadOp); + if (loadB) { + loadA.getValue().replaceAllUsesWith(loadB); + // Record this to erase later. + loadOpsToErase.push_back(loadA); + } } void AffineScalarReplacement::runOnFunction() { // Only supports single block functions at the moment. FuncOp f = getFunction(); - if (!llvm::hasSingleElement(f)) { - markAllAnalysesPreserved(); - return; - } - domInfo = &getAnalysis(); - postDomInfo = &getAnalysis(); + // Load op's whose results were replaced by those forwarded from stores. + SmallVector opsToErase; - loadOpsToErase.clear(); - memrefsToErase.clear(); + // A list of memref's that are potentially dead / could be eliminated. + SmallPtrSet memrefsToErase; + + auto &domInfo = getAnalysis(); - // Walk all load's and perform store to load forwarding and loadCSE. + // Walk all load's and perform store to load forwarding. f.walk([&](AffineReadOpInterface loadOp) { - // Do store to load forwarding first, if no success, try loadCSE. - if (failed(forwardStoreToLoad(loadOp))) - loadCSE(loadOp); + if (failed( + forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo))) { + loadCSE(loadOp, opsToErase, domInfo); + } }); - // Erase all load op's whose results were replaced with store or load fwd'ed - // ones. - for (auto *loadOp : loadOpsToErase) - loadOp->erase(); + // Erase all load op's whose results were replaced with store fwd'ed ones. + for (auto *op : opsToErase) + op->erase(); // Check if the store fwd'ed memrefs are now left with only stores and can // thus be completely deleted. Note: the canonicalize pass should be able diff --git a/mlir/test/Dialect/Affine/scalrep.mlir b/mlir/test/Dialect/Affine/scalrep.mlir --- a/mlir/test/Dialect/Affine/scalrep.mlir +++ b/mlir/test/Dialect/Affine/scalrep.mlir @@ -530,3 +530,90 @@ } return } + +// CHECK-LABEL: func @external_no_forward_load +// CHECK: affine.load +// CHECK: affine.store +// CHECK: affine.load +// CHECK: affine.store + +func @external_no_forward_load(%in : memref<512xf32>, %out : memref<512xf32>) { + affine.for %i = 0 to 16 { + %ld0 = affine.load %in[32*%i] : memref<512xf32> + affine.store %ld0, %out[32*%i] : memref<512xf32> + "memop"(%in, %out) : (memref<512xf32>, memref<512xf32>) -> () + %ld1 = affine.load %in[32*%i] : memref<512xf32> + affine.store %ld1, %out[32*%i] : memref<512xf32> + } + return +} + +// CHECK-LABEL: func @external_no_forward_store +// CHECK: affine.store +// CHECK: affine.load +// CHECK: affine.store + +func @external_no_forward_store(%in : memref<512xf32>, %out : memref<512xf32>) { + %cf1 = constant 1.0 : f32 + affine.for %i = 0 to 16 { + affine.store %cf1, %in[32*%i] : memref<512xf32> + "memop"(%in, %out) : (memref<512xf32>, memref<512xf32>) -> () + %ld1 = affine.load %in[32*%i] : memref<512xf32> + affine.store %ld1, %out[32*%i] : memref<512xf32> + } + return +} + +// CHECK-LABEL: func @external_no_forward_cst +// CHECK: affine.store +// CHECK-NEXT: affine.store +// CHECK-NEXT: affine.load +// CHECK-NEXT: affine.store + +func @external_no_forward_cst(%in : memref<512xf32>, %out : memref<512xf32>) { + %cf1 = constant 1.0 : f32 + %cf2 = constant 2.0 : f32 + %m2 = memref.cast %in : memref<512xf32> to memref + affine.for %i = 0 to 16 { + affine.store %cf1, %in[32*%i] : memref<512xf32> + affine.store %cf2, %m2[32*%i] : memref + %ld1 = affine.load %in[32*%i] : memref<512xf32> + affine.store %ld1, %out[32*%i] : memref<512xf32> + } + return +} + +// Although there is a dependence from the second store to the load, it is +// satisfied by the outer surrounding loop, and does not prevent the first +// store to be forwarded to the load. +func @overlap_no_fwd(%N : index) -> f32 { + %cf7 = constant 7.0 : f32 + %cf9 = constant 9.0 : f32 + %c0 = constant 0 : index + %c1 = constant 1 : index + %m = memref.alloc() : memref<10xf32> + affine.for %i0 = 0 to 5 { + affine.store %cf7, %m[2 * %i0] : memref<10xf32> + affine.for %i1 = 0 to %N { + %v0 = affine.load %m[2 * %i0] : memref<10xf32> + %v1 = addf %v0, %v0 : f32 + affine.store %cf9, %m[%i0 + 1] : memref<10xf32> + } + } + // Due to this load, the memref isn't optimized away. + %v3 = affine.load %m[%c1] : memref<10xf32> + return %v3 : f32 + +// CHECK-LABEL: func @overlap_no_fwd +// CHECK: affine.for %{{.*}} = 0 to 5 { +// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> +// CHECK-NEXT: affine.for %{{.*}} = 0 to %{{.*}} { +// CHECK-NEXT: %{{.*}} = affine.load +// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32 +// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}}] : memref<10xf32> +// CHECK-NEXT: } +// CHECK-NEXT: } +// CHECK-NEXT: %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<10xf32> +// CHECK-NEXT: return %{{.*}} : f32 +} +