diff --git a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOpsSpec.tc b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOpsSpec.tc --- a/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOpsSpec.tc +++ b/mlir/include/mlir/Dialect/Linalg/IR/LinalgNamedStructuredOpsSpec.tc @@ -155,7 +155,7 @@ def depthwise_conv_2d_input_nhwc_filter_hwcf (I: f32(N, IH, IW, CI), K: f32(KH, KW, CI, CO)) -> (O: f32(N, OH, OW, CI, CO)) - attr(strides: 2xi64) + attr(strides: 2xi64, dilations: 2xi64) """A general depth-wise 2-D convolution operation. This operation performs depth-wise 2-D convolution over an input `I` and filter @@ -164,7 +164,7 @@ ``` O(n, oh, ow, ci, co) = AddFOp( O(n, oh, ow, ci, co), - MulFOp(I(n, oh * strides[0] + kh, ow * strides[1] + kw, ci), + MulFOp(I(n, oh * strides[0] + kh * dilations[0], ow * strides[1] + kw * dilations[1], ci), K(kh, kw, ci, co))); ``` @@ -186,7 +186,7 @@ { O(n, oh, ow, ci, co) = AddFOp( O(n, oh, ow, ci, co), - MulFOp(I(n, oh * strides[0] + kh, ow * strides[1] + kw, ci), + MulFOp(I(n, oh * strides[0] + kh * dilations[0], ow * strides[1] + kw * dilations[1], ci), K(kh, kw, ci, co))); } @@ -194,7 +194,7 @@ def depthwise_conv_2d_input_nhwc_filter_hwc (I: f32(N, IH, IW, C), K: f32(KH, KW, C)) -> (O: f32(N, OH, OW, C)) - attr(strides: 2xi64) + attr(strides: 2xi64, dilations: 2xi64) """A depth-wise 2-D convolution operation. This operation performs depth-wise 2-D convolution over an input `I` and filter @@ -203,7 +203,7 @@ ``` O(n, oh, ow, c) = AddFOp( O(n, oh, ow, c), - MulFOp(I(n, oh * strides[0] + kh, ow * strides[1] + kw, c), + MulFOp(I(n, oh * strides[0] + kh * dilations[0], ow * strides[1] + kw * dilations[1], c), K(kh, kw, c))); ``` @@ -223,7 +223,7 @@ { O(n, oh, ow, c) = AddFOp( O(n, oh, ow, c), - MulFOp(I(n, oh * strides[0] + kh, ow * strides[1] + kw, c), + MulFOp(I(n, oh * strides[0] + kh * dilations[0], ow * strides[1] + kw * dilations[1], c), K(kh, kw, c))); } diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp --- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp +++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp @@ -956,9 +956,6 @@ } if (isa(op)) { - if (llvm::any_of(dilation, [](int64_t d) { return d > 1; })) - return failure(); - ShapedType linalgConvTy = RankedTensorType::get({resultShape[0], resultShape[1], resultShape[2], weightShape[2], weightShape[3]}, @@ -969,7 +966,7 @@ Value conv = rewriter .create( loc, linalgConvTy, ValueRange{input, weight}, - ValueRange{biasReshape}, strideAttr) + ValueRange{biasReshape}, dilationAttr, strideAttr) .getResult(0); Value reshape = rewriter.create(loc, resultTy, conv); diff --git a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir --- a/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir +++ b/mlir/test/Conversion/TosaToLinalg/tosa-to-linalg.mlir @@ -1189,7 +1189,7 @@ // CHECK: linalg.yield %arg3 : f32 // CHECK: } -> tensor<1x5x5x33xf32> // CHECK: [[DBIAS:%.+]] = linalg.tensor_reshape [[BIAS]] {{\[}}[0], [1], [2], [3, 4]] - // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf {strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[DBIAS]] : tensor<1x5x5x3x11xf32>) + // CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>) outs([[DBIAS]] : tensor<1x5x5x3x11xf32>) // CHECK: linalg.tensor_reshape %3 {{\[}}[0], [1], [2], [3, 4]] %2 = "tosa.depthwise_conv2d"(%arg0, %arg1, %arg2) { pad = [0, 0, 0, 0], stride = [1, 1], dilation = [1, 1] } : (tensor<1x7x5x3xf32>, tensor<3x1x3x11xf32>, tensor<33xf32>) -> (tensor<1x5x5x33xf32>) return diff --git a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir --- a/mlir/test/Dialect/Linalg/generalize-named-ops.mlir +++ b/mlir/test/Dialect/Linalg/generalize-named-ops.mlir @@ -78,7 +78,7 @@ func @depthwise_conv_2d_input_nhwc_filter_hwcf(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { linalg.depthwise_conv_2d_input_nhwc_filter_hwcf - { strides = dense<1> : tensor<2xi64> } + { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x3x4x2x3xf32>) return @@ -103,8 +103,35 @@ // ----- +func @depthwise_conv_2d_input_nhwc_filter_hwcf(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x2x3x2x3xf32>) { + linalg.depthwise_conv_2d_input_nhwc_filter_hwcf + { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } + ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) + outs(%output : memref<2x2x3x2x3xf32>) + return +} + +// CHECK-DAG: #[[MAP0:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1 + d5 * 2, d2 + d6 * 2, d3)> +// CHECK-DAG: #[[MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d3, d4)> +// CHECK-DAG: #[[MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d1, d2, d3, d4)> + +// CHECK: func @depthwise_conv_2d_input_nhwc_filter_hwcf + +// CHECK: linalg.generic +// CHECK-SAME: indexing_maps = [#[[MAP0]], #[[MAP1]], #[[MAP2]]] +// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]} +// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) +// CHECK-SAME: outs(%{{.+}} : memref<2x2x3x2x3xf32>) + +// CHECK: ^{{.+}}(%[[BBARG0:.+]]: f32, %[[BBARG1:.+]]: f32, %[[BBARG2:.+]]: f32) +// CHECK-NEXT: %[[MUL:.+]] = mulf %[[BBARG0]], %[[BBARG1]] : f32 +// CHECK-NEXT: %[[ADD:.+]] = addf %[[BBARG2]], %[[MUL]] : f32 +// CHECK-NEXT: linalg.yield %[[ADD]] : f32 + +// ----- + func @depthwise_conv_2d_input_nhwc_filter_hwc(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { - linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<2> : vector<2xi64>} + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return diff --git a/mlir/test/Dialect/Linalg/named-ops.mlir b/mlir/test/Dialect/Linalg/named-ops.mlir --- a/mlir/test/Dialect/Linalg/named-ops.mlir +++ b/mlir/test/Dialect/Linalg/named-ops.mlir @@ -6,11 +6,11 @@ %init = linalg.init_tensor [2, 3, 4, 2, 3] : tensor<2x3x4x2x3xf32> %fill = linalg.fill(%init, %zero) : tensor<2x3x4x2x3xf32>, f32 -> tensor<2x3x4x2x3xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf - // CHECK-SAME: {strides = dense<1> : tensor<2xi64>} + // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<2x3x4x2x3xf32>) %0 = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf - { strides = dense<1> : tensor<2xi64> } + { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : tensor<2x4x5x2xf32>, tensor<2x2x2x3xf32>) outs(%fill : tensor<2x3x4x2x3xf32>) -> tensor<2x3x4x2x3xf32> return %0 : tensor<2x3x4x2x3xf32> @@ -19,11 +19,11 @@ // CHECK-LABEL: func @depthwise_conv_2d_input_nhwc_filter_hwcf_memref func @depthwise_conv_2d_input_nhwc_filter_hwcf_memref(%input: memref<2x4x5x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x3x4x2x3xf32>) { // CHECK: linalg.depthwise_conv_2d_input_nhwc_filter_hwcf - // CHECK-SAME: {strides = dense<1> : tensor<2xi64>} + // CHECK-SAME: {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) // CHECK-SAME: outs(%{{.+}} : memref<2x3x4x2x3xf32>) linalg.depthwise_conv_2d_input_nhwc_filter_hwcf - { strides = dense<1> : tensor<2xi64> } + { dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } ins(%input, %filter : memref<2x4x5x2xf32>, memref<2x2x2x3xf32>) outs(%output : memref<2x3x4x2x3xf32>) return @@ -33,10 +33,10 @@ func @depthwise_conv_2d_input_nhwc_filter_hwc_tensor(%input: tensor<1x113x113x96xf32>, %filter: tensor<3x3x96xf32>) -> tensor<1x56x56x96xf32> { %init = linalg.init_tensor [1, 56, 56, 96] : tensor<1x56x56x96xf32> // CHECK: %{{.+}} = linalg.depthwise_conv_2d_input_nhwc_filter_hwc - // CHECK-SAME: {strides = dense<2> : vector<2xi64>} + // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> - %0 = linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<2> : vector<2xi64>} + %0 = linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: tensor<1x113x113x96xf32>, tensor<3x3x96xf32>) outs(%init: tensor<1x56x56x96xf32>) -> tensor<1x56x56x96xf32> return %0: tensor<1x56x56x96xf32> @@ -45,20 +45,58 @@ // CHECK-LABEL: func @depthwise_conv_2d_input_nhwc_filter_hwc_memref func @depthwise_conv_2d_input_nhwc_filter_hwc_memref(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // CHECK: linalg.depthwise_conv_2d_input_nhwc_filter_hwc - // CHECK-SAME: {strides = dense<2> : vector<2xi64>} + // CHECK-SAME: {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<1x113x113x96xf32>, memref<3x3x96xf32>) // CHECK-SAME: outs(%{{.+}} : memref<1x56x56x96xf32>) - linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<2> : vector<2xi64>} + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return } +func @depthwise_conv_2d_input_nhwc_filter_hwcf_tensor_dilated(%input: tensor<2x8x9x2xf32>, %filter: tensor<2x2x2x3xf32>) -> tensor<2x6x7x2x3xf32> { + %zero = constant 0.000000e+00 : f32 + %init = linalg.init_tensor [2, 6, 7, 2, 3] : tensor<2x6x7x2x3xf32> + %fill = linalg.fill(%init, %zero) : tensor<2x6x7x2x3xf32>, f32 -> tensor<2x6x7x2x3xf32> + // CHECK: %{{.+}} = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf + // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} + // CHECK-SAME: ins(%{{.+}}, %{{.+}} : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) + // CHECK-SAME: outs(%{{.+}} : tensor<2x6x7x2x3xf32>) + %0 = linalg.depthwise_conv_2d_input_nhwc_filter_hwcf + { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } + ins(%input, %filter : tensor<2x8x9x2xf32>, tensor<2x2x2x3xf32>) + outs(%fill : tensor<2x6x7x2x3xf32>) -> tensor<2x6x7x2x3xf32> + return %0 : tensor<2x6x7x2x3xf32> +} + +// CHECK-LABEL: func @depthwise_conv_2d_input_nhwc_filter_hwcf_memref_dilated +func @depthwise_conv_2d_input_nhwc_filter_hwcf_memref_dilated(%input: memref<2x8x9x2xf32>, %filter: memref<2x2x2x3xf32>, %output: memref<2x6x7x2x3xf32>) { + // CHECK: linalg.depthwise_conv_2d_input_nhwc_filter_hwcf + // CHECK-SAME: {dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} + // CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) + // CHECK-SAME: outs(%{{.+}} : memref<2x6x7x2x3xf32>) + linalg.depthwise_conv_2d_input_nhwc_filter_hwcf + { dilations = dense<2> : tensor<2xi64>, strides = dense<1> : tensor<2xi64> } + ins(%input, %filter : memref<2x8x9x2xf32>, memref<2x2x2x3xf32>) + outs(%output : memref<2x6x7x2x3xf32>) + return +} + // ----- func @depthwise_conv_2d_input_nhwc_filter_missing_stride(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{missing indexing map required attribute 'strides'}} - linalg.depthwise_conv_2d_input_nhwc_filter_hwc + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>} + ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) + outs(%output: memref<1x56x56x96xf32>) + return +} + +// ----- + +func @depthwise_conv_2d_input_nhwc_filter_missing_dilations(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { + // expected-error @+1 {{missing indexing map required attribute 'dilations'}} + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<1> : vector<2xi64>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -68,7 +106,7 @@ func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_element_type(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{incorrect element type for indexing map required attribute 'strides'}} - linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<2.0> : vector<2xf32>} + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2.0> : vector<2xf32>} ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return @@ -78,7 +116,7 @@ func @depthwise_conv_2d_input_nhwc_filter_wrong_stride_size(%input: memref<1x113x113x96xf32>, %filter: memref<3x3x96xf32>, %output: memref<1x56x56x96xf32>) { // expected-error @+1 {{incorrect shape for indexing map required attribute 'strides'}} - linalg.depthwise_conv_2d_input_nhwc_filter_hwc {strides = dense<2> : vector<3xi64> } + linalg.depthwise_conv_2d_input_nhwc_filter_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<3xi64> } ins(%input, %filter: memref<1x113x113x96xf32>, memref<3x3x96xf32>) outs(%output: memref<1x56x56x96xf32>) return