Index: llvm/trunk/lib/Target/X86/X86ISelLowering.cpp =================================================================== --- llvm/trunk/lib/Target/X86/X86ISelLowering.cpp +++ llvm/trunk/lib/Target/X86/X86ISelLowering.cpp @@ -160,8 +160,51 @@ /// we want. It need not be aligned to a 128-bit boundary. That makes /// lowering INSERT_VECTOR_ELT operations easier. static SDValue Insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal, - SelectionDAG &DAG,SDLoc dl) { + SelectionDAG &DAG, SDLoc dl) { assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!"); + + // For insertion into the zero index (low half) of a 256-bit vector, it is + // more efficient to generate a blend with immediate instead of an insert*128. + // We are still creating an INSERT_SUBVECTOR below with an undef node to + // extend the subvector to the size of the result vector. Make sure that + // we are not recursing on that node by checking for undef here. + if (IdxVal == 0 && Result.getValueType().is256BitVector() && + Result.getOpcode() != ISD::UNDEF) { + EVT ResultVT = Result.getValueType(); + SDValue ZeroIndex = DAG.getIntPtrConstant(0); + SDValue Undef = DAG.getUNDEF(ResultVT); + SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef, + Vec, ZeroIndex); + + // The blend instruction, and therefore its mask, depend on the data type. + MVT ScalarType = ResultVT.getScalarType().getSimpleVT(); + if (ScalarType.isFloatingPoint()) { + // Choose either vblendps (float) or vblendpd (double). + unsigned ScalarSize = ScalarType.getSizeInBits(); + assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type"); + unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f; + SDValue Mask = DAG.getConstant(MaskVal, MVT::i8); + return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask); + } + + const X86Subtarget &Subtarget = + static_cast(DAG.getSubtarget()); + + // AVX2 is needed for 256-bit integer blend support. + // Integers must be cast to 32-bit because there is only vpblendd; + // vpblendw can't be used for this because it has a handicapped mask. + + // If we don't have AVX2, then cast to float. Using a wrong domain blend + // is still more efficient than using the wrong domain vinsertf128 that + // will be created by InsertSubVector(). + MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32; + + SDValue Mask = DAG.getConstant(0x0f, MVT::i8); + Vec256 = DAG.getNode(ISD::BITCAST, dl, CastVT, Vec256); + Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask); + return DAG.getNode(ISD::BITCAST, dl, ResultVT, Vec256); + } + return InsertSubVector(Result, Vec, IdxVal, DAG, dl, 128); } Index: llvm/trunk/test/CodeGen/X86/2012-04-26-sdglue.ll =================================================================== --- llvm/trunk/test/CodeGen/X86/2012-04-26-sdglue.ll +++ llvm/trunk/test/CodeGen/X86/2012-04-26-sdglue.ll @@ -5,10 +5,10 @@ ; It's hard to test for the ISEL condition because CodeGen optimizes ; away the bugpointed code. Just ensure the basics are still there. ;CHECK-LABEL: func: -;CHECK: vpxor -;CHECK: vinserti128 +;CHECK: vxorps ;CHECK: vpshufd ;CHECK: vpbroadcastd +;CHECK: vinserti128 ;CHECK: vmulps ;CHECK: vmulps ;CHECK: ret Index: llvm/trunk/test/CodeGen/X86/avx-cast.ll =================================================================== --- llvm/trunk/test/CodeGen/X86/avx-cast.ll +++ llvm/trunk/test/CodeGen/X86/avx-cast.ll @@ -1,51 +1,100 @@ -; RUN: llc < %s -mtriple=x86_64-apple-darwin -mattr=+avx | FileCheck %s +; RUN: llc < %s -mtriple=x86_64-apple-darwin -mattr=+avx | FileCheck %s --check-prefix=AVX1 +; RUN: llc < %s -mtriple=x86_64-apple-darwin -mattr=+avx2 | FileCheck %s --check-prefix=AVX2 + +; Prefer a blend instruction to a vinsert128 instruction because blends +; are simpler (no lane changes) and therefore will have equal or better +; performance. -; CHECK-LABEL: castA: -; CHECK: vxorps -; CHECK-NEXT: vinsertf128 $0 define <8 x float> @castA(<4 x float> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castA: +; AVX1: vxorps %ymm1, %ymm1, %ymm1 +; AVX1-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7] +; AVX1-NEXT: retq +; +; AVX2-LABEL: castA: +; AVX2: vxorps %ymm1, %ymm1, %ymm1 +; AVX2-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7] +; AVX2-NEXT: retq + entry: %shuffle.i = shufflevector <4 x float> %m, <4 x float> zeroinitializer, <8 x i32> ret <8 x float> %shuffle.i } -; CHECK-LABEL: castB: -; CHECK: vxorps -; CHECK-NEXT: vinsertf128 $0 define <4 x double> @castB(<2 x double> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castB: +; AVX1: vxorpd %ymm1, %ymm1, %ymm1 +; AVX1-NEXT: vblendpd {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3] +; AVX1-NEXT: retq +; +; AVX2-LABEL: castB: +; AVX2: vxorpd %ymm1, %ymm1, %ymm1 +; AVX2-NEXT: vblendpd {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3] +; AVX2-NEXT: retq + entry: %shuffle.i = shufflevector <2 x double> %m, <2 x double> zeroinitializer, <4 x i32> ret <4 x double> %shuffle.i } -; CHECK-LABEL: castC: -; CHECK: vxorps -; CHECK-NEXT: vinsertf128 $0 +; AVX2 is needed for integer types. + define <4 x i64> @castC(<2 x i64> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castC: +; AVX1: vxorps %xmm1, %xmm1, %xmm1 +; AVX1-NEXT: vblendps {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7] +; AVX1-NEXT: retq +; +; AVX2-LABEL: castC: +; AVX2: vpxor %ymm1, %ymm1, %ymm1 +; AVX2-NEXT: vpblendd {{.*#+}} ymm0 = ymm0[0,1,2,3],ymm1[4,5,6,7] +; AVX2-NEXT: retq + entry: %shuffle.i = shufflevector <2 x i64> %m, <2 x i64> zeroinitializer, <4 x i32> ret <4 x i64> %shuffle.i } -; CHECK-LABEL: castD: -; CHECK-NOT: vextractf128 $0 +; The next three tests don't need any shuffling. There may or may not be a +; vzeroupper before the return, so just check for the absence of shuffles. + define <4 x float> @castD(<8 x float> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castD: +; AVX1-NOT: extract +; AVX1-NOT: blend +; +; AVX2-LABEL: castD: +; AVX2-NOT: extract +; AVX2-NOT: blend + entry: %shuffle.i = shufflevector <8 x float> %m, <8 x float> %m, <4 x i32> ret <4 x float> %shuffle.i } -; CHECK-LABEL: castE: -; CHECK-NOT: vextractf128 $0 define <2 x i64> @castE(<4 x i64> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castE: +; AVX1-NOT: extract +; AVX1-NOT: blend +; +; AVX2-LABEL: castE: +; AVX2-NOT: extract +; AVX2-NOT: blend + entry: %shuffle.i = shufflevector <4 x i64> %m, <4 x i64> %m, <2 x i32> ret <2 x i64> %shuffle.i } -; CHECK-LABEL: castF: -; CHECK-NOT: vextractf128 $0 define <2 x double> @castF(<4 x double> %m) nounwind uwtable readnone ssp { +; AVX1-LABEL: castF: +; AVX1-NOT: extract +; AVX1-NOT: blend +; +; AVX2-LABEL: castF: +; AVX2-NOT: extract +; AVX2-NOT: blend + entry: %shuffle.i = shufflevector <4 x double> %m, <4 x double> %m, <2 x i32> ret <2 x double> %shuffle.i Index: llvm/trunk/test/CodeGen/X86/vector-shuffle-256-v32.ll =================================================================== --- llvm/trunk/test/CodeGen/X86/vector-shuffle-256-v32.ll +++ llvm/trunk/test/CodeGen/X86/vector-shuffle-256-v32.ll @@ -652,12 +652,12 @@ ; ; AVX2-LABEL: shuffle_v32i8_31_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00_00: ; AVX2: # BB#0: +; AVX2-NEXT: vperm2i128 {{.*#+}} ymm1 = ymm0[2,3,0,1] +; AVX2-NEXT: vpblendd {{.*#+}} ymm0 = ymm0[0,1],ymm1[2,3,4,5,6,7] ; AVX2-NEXT: movl $15, %eax ; AVX2-NEXT: vmovd %eax, %xmm1 ; AVX2-NEXT: vpxor %ymm2, %ymm2, %ymm2 -; AVX2-NEXT: vinserti128 $0, %xmm1, %ymm2, %ymm1 -; AVX2-NEXT: vperm2i128 {{.*#+}} ymm2 = ymm0[2,3,0,1] -; AVX2-NEXT: vpblendd {{.*#+}} ymm0 = ymm0[0,1],ymm2[2,3,4,5,6,7] +; AVX2-NEXT: vpblendd $15, %ymm1, %ymm2, %ymm1 ; AVX2-NEXT: vpshufb %ymm1, %ymm0, %ymm0 ; AVX2-NEXT: retq %shuffle = shufflevector <32 x i8> %a, <32 x i8> %b, <32 x i32>