Index: lib/Target/R600/SIISelLowering.h =================================================================== --- lib/Target/R600/SIISelLowering.h +++ lib/Target/R600/SIISelLowering.h @@ -56,6 +56,8 @@ static SDValue performUCharToFloatCombine(SDNode *N, DAGCombinerInfo &DCI); + static SDValue performSHLPtrCombine(SDNode *N, + DAGCombinerInfo &DCI); public: SITargetLowering(TargetMachine &tm); Index: lib/Target/R600/SIISelLowering.cpp =================================================================== --- lib/Target/R600/SIISelLowering.cpp +++ lib/Target/R600/SIISelLowering.cpp @@ -233,6 +233,26 @@ setTargetDAGCombine(ISD::UINT_TO_FP); + // All memory operations. Some folding on the pointer operand is done to help + // matching the constant offsets in the addressing modes. + setTargetDAGCombine(ISD::LOAD); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::ATOMIC_LOAD); + setTargetDAGCombine(ISD::ATOMIC_STORE); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); + setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); + setTargetDAGCombine(ISD::ATOMIC_SWAP); + setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); + setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); + setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); + setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); + setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); + setSchedulingPreference(Sched::RegPressure); } @@ -1251,6 +1271,55 @@ return SDValue(); } +// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) + +// This is a variant of +// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), +// +// The normal DAG combiner will do this, but only if the add has one use since +// that would increase the number of instructions. +// +// This prevents us from seeing a constant offset that can be folded into a +// memory instruction's addressing mode. If we know the resulting add offset of +// a pointer can be folded into an addressing offset, we can replace the pointer +// operand with the add of new constant offset. This eliminates one of the uses, +// and may allow the remaining use to also be simplified. +// +SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, + DAGCombinerInfo &DCI) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + if (N0.getOpcode() != ISD::ADD) + return SDValue(); + + const ConstantSDNode *CN1 = dyn_cast(N1); + if (!CN1) + return SDValue(); + + const ConstantSDNode *CAdd = dyn_cast(N0.getOperand(1)); + if (!CAdd) + return SDValue(); + + // XXX: Do we need to check the right number of bits depending on the address + // space. I think they are all 16-bit offsets. + + // If the resulting offset is > 16 bits, we can't fold it into the addressing + // mode offset. + APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); + if (!Offset.isIntN(16)) + return SDValue(); + + SelectionDAG &DAG = DCI.DAG; + SDLoc SL(N); + EVT VT = N->getValueType(0); + + SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); + SDValue COffset = DAG.getConstant(Offset, MVT::i32); + + return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); +} + SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; @@ -1283,8 +1352,44 @@ case ISD::UINT_TO_FP: { return performUCharToFloatCombine(N, DCI); } + case ISD::LOAD: + case ISD::STORE: + case ISD::ATOMIC_LOAD: + case ISD::ATOMIC_STORE: + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. + if (DCI.isBeforeLegalize()) + break; + + MemSDNode *MemNode = cast(N); + SDValue Ptr = MemNode->getBasePtr(); + + if (Ptr.getOpcode() == ISD::SHL && + MemNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) { + SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), DCI); + if (NewPtr) { + SmallVector NewOps; + for (unsigned I = 0, N = MemNode->getNumOperands(); I != N; ++I) + NewOps.push_back(MemNode->getOperand(I)); + + NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; + return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); + } + } + break; + } } - return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); } Index: test/CodeGen/R600/shl_add_ptr.ll =================================================================== --- /dev/null +++ test/CodeGen/R600/shl_add_ptr.ll @@ -0,0 +1,268 @@ +; RUN: llc -march=r600 -mcpu=SI -verify-machineinstrs < %s | FileCheck -check-prefix=SI %s + +; Test that doing a shift of a pointer with a constant add will be +; folded into the constant offset addressing mode even if the add has +; multiple uses. This is relevant to accessing 2 separate, adjacent +; LDS globals. + + +declare i32 @llvm.r600.read.tidig.x() #1 + +@lds0 = addrspace(3) global [512 x float] zeroinitializer, align 4 +@lds1 = addrspace(3) global [512 x float] zeroinitializer, align 4 + + +; Make sure the (add tid, 2) << 2 gets folded into the ds's offset as (tid << 2) + 8 + +; SI-LABEL: @load_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x8, [M0] +; SI: S_ENDPGM +define void @load_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 + %val0 = load float addrspace(3)* %arrayidx0, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + store float %val0, float addrspace(1)* %out + ret void +} + +; Make sure once the first use is folded into the addressing mode, the +; remaining add use goes through the normal shl + add constant fold. + +; SI-LABEL: @load_shl_base_lds_1 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_READ_B32 [[RESULT:v[0-9]+]], [[PTR]], 0x8, [M0] +; SI: V_ADD_I32_e32 [[ADDUSE:v[0-9]+]], 8, v{{[0-9]+}} +; SI-DAG: BUFFER_STORE_DWORD [[RESULT]] +; SI-DAG: BUFFER_STORE_DWORD [[ADDUSE]] +; SI: S_ENDPGM +define void @load_shl_base_lds_1(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 + %val0 = load float addrspace(3)* %arrayidx0, align 4 + %shl_add_use = shl i32 %idx.0, 2 + store i32 %shl_add_use, i32 addrspace(1)* %add_use, align 4 + store float %val0, float addrspace(1)* %out + ret void +} + +; The two globals are placed adjacent in memory, so the same base +; pointer can be used with an offset into the second one. + +; SI-LABEL: @load_shl_base_lds_2 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x100, [M0] +; SI-NEXT: DS_READ_B32 {{v[0-9]+}}, [[PTR]], 0x900, [M0] +; SI: S_ENDPGM +define void @load_shl_base_lds_2(float addrspace(1)* %out) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 64 + %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 + %val0 = load float addrspace(3)* %arrayidx0, align 4 + %arrayidx1 = getelementptr inbounds [512 x float] addrspace(3)* @lds1, i32 0, i32 %idx.0 + %val1 = load float addrspace(3)* %arrayidx1, align 4 + %sum = fadd float %val0, %val1 + store float %sum, float addrspace(1)* %out, align 4 + ret void +} + +; SI-LABEL: @store_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_WRITE_B32 [[PTR]], {{v[0-9]+}}, 0x8 [M0] +; SI: S_ENDPGM +define void @store_shl_base_lds_0(float addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x float] addrspace(3)* @lds0, i32 0, i32 %idx.0 + store float 1.0, float addrspace(3)* %arrayidx0, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + + +; -------------------------------------------------------------------------------- +; Atomics. + +@lds2 = addrspace(3) global [512 x i32] zeroinitializer, align 4 + +; define void @atomic_load_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { +; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 +; %idx.0 = add nsw i32 %tid.x, 2 +; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 +; %val = load atomic i32 addrspace(3)* %arrayidx0 seq_cst, align 4 +; store i32 %val, i32 addrspace(1)* %out, align 4 +; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 +; ret void +; } + + +; SI-LABEL: @atomic_cmpxchg_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_CMPST_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_cmpxchg_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use, i32 %swap) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %pair = cmpxchg i32 addrspace(3)* %arrayidx0, i32 7, i32 %swap seq_cst monotonic + %result = extractvalue { i32, i1 } %pair, 0 + store i32 %result, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_swap_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_WRXCHG_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_swap_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw xchg i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_add_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_ADD_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_add_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw add i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_sub_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_SUB_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_sub_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw sub i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_and_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_AND_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_and_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw and i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_or_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_OR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_or_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw or i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_xor_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_XOR_RTN_B32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_xor_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw xor i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; define void @atomic_nand_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { +; %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 +; %idx.0 = add nsw i32 %tid.x, 2 +; %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 +; %val = atomicrmw nand i32 addrspace(3)* %arrayidx0, i32 3 seq_cst +; store i32 %val, i32 addrspace(1)* %out, align 4 +; store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 +; ret void +; } + +; SI-LABEL: @atomic_min_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_MIN_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_min_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw min i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_max_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_MAX_RTN_I32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_max_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw max i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_umin_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_MIN_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_umin_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw umin i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +; SI-LABEL: @atomic_umax_shl_base_lds_0 +; SI: V_LSHLREV_B32_e32 [[PTR:v[0-9]+]], 2, {{v[0-9]+}} +; SI: DS_MAX_RTN_U32 {{v[0-9]+}}, [[PTR]], {{v[0-9]+}}, 0x8 +; SI: S_ENDPGM +define void @atomic_umax_shl_base_lds_0(i32 addrspace(1)* %out, i32 addrspace(1)* %add_use) #0 { + %tid.x = tail call i32 @llvm.r600.read.tidig.x() #1 + %idx.0 = add nsw i32 %tid.x, 2 + %arrayidx0 = getelementptr inbounds [512 x i32] addrspace(3)* @lds2, i32 0, i32 %idx.0 + %val = atomicrmw umax i32 addrspace(3)* %arrayidx0, i32 3 seq_cst + store i32 %val, i32 addrspace(1)* %out, align 4 + store i32 %idx.0, i32 addrspace(1)* %add_use, align 4 + ret void +} + +attributes #0 = { nounwind } +attributes #1 = { nounwind readnone }